• Title/Summary/Keyword: effective stiffness

Search Result 1,071, Processing Time 0.026 seconds

Dynamic Characteristics and Responses of Tall Building Structures with Double Negative Stiffness Damped Outriggers

  • Sun, Feifei;Duan, Ningling;Wang, Meng;Yang, Jiaqi
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.3
    • /
    • pp.229-242
    • /
    • 2021
  • Dynamic characteristics of tall building structures with double negative stiffness damped outriggers (2NSDO) are parametrically studied using the theoretical formula. Compared with one negative stiffness damped outrigger (1NSDO), 2NSDO can achieve a similar maximal modal damping ratio with a smaller negative stiffness ratio. Besides, the 2NSDO can improve the maximum achievable damping ratio to about 30% with less consumption of an outrigger damping coefficient compared with the double conventional damped outriggers (2CDO). Besides, the responses of structures with 2NSDO under fluctuating wind load are investigated by time-history analysis. Numerical results show that the 2NSDO is effective in reducing structural acceleration under fluctuating wind load, being more efficient than 1NSDO.

Out-of-plane buckling and bracing requirement in double-angle trusses

  • Chen, Shaofan;Su, Mingzhou
    • Steel and Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.261-275
    • /
    • 2003
  • Truss members built-up with double angles back-to-back have monosymmetric cross-section and twisting always accompanies flexion upon the onset of buckling about the axis of symmetry. Approximate formulae for calculating the buckling capacity are presented in this paper for routine design purpose. For a member susceptible only to flexural buckling, its optimal cross-section should consist of slender plate elements so as to get larger radius of gyration. But, occurrence of twisting changes the situation owing to the weakness of thin plates in resisting torsion. Criteria for limiting the leg slenderness are discussed herein. Truss web members in compression are usually considered as hinged at both ends for out-of-plane buckling. In case one (or both) end of member is not supported laterally by bracing member, its adjoining members have to provide an elastic support of adequate stiffness in order not to underdesign the member. The stiffness provided by either compression or tension chords in different cases is analyzed, and the effect of initial crookedness of compression chord is taken into account. Formulae are presented to compute the required stiffness of chord member and to determine the effective length factor for inadequately constrained compressive diagonals.

Horizontal stiffness solutions for unbonded fiber reinforced elastomeric bearings

  • Toopchi-Nezhad, H.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.395-410
    • /
    • 2014
  • Fiber Reinforced Elastomeric Bearings (FREBs) are a relatively new type of laminated bearings that can be used as seismic/vibration isolators or bridge bearings. In an unbonded (U)-FREB, the bearing is placed between the top and bottom supports with no bonding or fastening provided at its contact surfaces. Under shear loads the top and bottom faces of a U-FREB roll off the contact supports and the bearing exhibits rollover deformation. As a result of rollover deformation, the horizontal response characteristics of U-FREBs are significantly different than conventional elastomeric bearings that are employed in bonded application. Current literature lacks an efficient analytical horizontal stiffness solution for this type of bearings. This paper presents two simplified analytical models for horizontal stiffness evaluation of U-FREBs. Both models assume that the resistance to shear loads is only provided by an effective region of the bearing that sustains significant shear strains. The presented models are different in the way they relate this effective region to the horizontal bearing displacements. In comparison with experimental results and finite element analyses, the analytical models that are presented in this paper are found to be sufficiently accurate to be used in the preliminary design of U-FREBs.

Effects of Neck Stabilizing Exercise on Muscle Characteristics, Muscle Activity and Posture in Patients with Cervicogenic Headache (목 안정화 운동이 경추성두통 환자의 근육특성과 근활성도 및 자세에 미치는 영향)

  • Park, Seungkyu;Yoon, Jonghyuk
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.4
    • /
    • pp.301-309
    • /
    • 2019
  • Purpose : The purpose of this study was to provide an effective method of exercise therapy for patients with cervicogenic headache. Methods : The subjects were divided into the following two groups according to the intervention received: cervical stretch exercise (n=15, control group) cervix-stabilizing exercise (n=15, experimental group) tone (Hz) and stiffness (N/m) of the suboccipital and upper trapezius muscles were measured. T1 slope angle and neck tilt angle were measured. After the exercise program intervention, a greater amount of change in muscle tone and stiffness of suboccipital and upper trapezius muscles was found in the experimental group, as compared to the control group. Greater amount of change in posture was found in the experimental group, as compared to the control group (p<0.05). Results : After the exercise program intervention, a greater amount of change in muscle tone and stiffness of suboccipital and upper trapezius muscles was found in the experimental group, as compared to the control group. Greater amount of change in posture was found in the experimental group, as compared to the control group (p<0.05). Conclusion : The neck-stabilizing exercise were shown to be effective in decreasing the tone of the cervical muscles by stabilizing the cervical bone and improving muscle activity, and in improving the posture by decreasing muscle tone and stiffness.

Analysis of R/C frames considering cracking effect and plastic hinge formation

  • Kara, Ilker Fatih;Ashour, Ashraf F.;Dundar, Cengiz
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.669-681
    • /
    • 2017
  • The design of reinforced concrete buildings must satisfy the serviceability stiffness criteria in terms of maximum lateral deflections and inter story drift in order to prevent both structural and non-structural damages. Consideration of plastic hinge formation is also important to obtain accurate failure mechanism and ultimate strength of reinforced concrete frames. In the present study, an iterative procedure has been developed for the analysis of reinforced concrete frames with cracked elements and consideration of plastic hinge formation. The ACI and probability-based effective stiffness models are used for the effective moment of inertia of cracked members. Shear deformation effect is also considered, and the variation of shear stiffness due to cracking is evaluated by reduced shear stiffness models available in the literature. The analytical procedure has been demonstrated through the application to three reinforced concrete frame examples available in the literature. It has been shown that the iterative analytical procedure can provide accurate and efficient predictions of deflections and ultimate strength of the frames studied under lateral and vertical loads. The proposed procedure is also efficient from the viewpoint of computational time and convergence rate. The developed technique was able to accurately predict the locations and sequential development of plastic hinges in frames. The results also show that shear deformation can contribute significantly to frame deflections.

Design and Experimental Analysis of Fiber Reinforced Elastomeric Isolator (섬유보강 탄성받침의 설계 및 실험적 해석)

  • Moon, Byung-Young;Kang, Gyung-Ju;Kang, Beom-Soo;Kim, Kye-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2026-2033
    • /
    • 2002
  • The purpose of this study is to investigate the effect of mechanical properties of the FREI using horizontal stiffness and vertical stiffness by experiments. Two kinds of FREI are designed and fabricated. The steel plates of SREI are replaced with fibers in order to reduce the cost of fabrication and installation. At first, the Nylon fiber is adopted as feasibility study of FREI. The experimental results of Nylon FREI and SREI show that the vertical stiffness of Nylon FREI is lower than SREI, and effective damping is two times higher than SREI. Carbon is adopted, by these rusults, as strong reinforcement than Nylon and full scale of carbon FREI was designed and fabricated. By the experimental test results, it is shown that the vertical stiffness of carbon FREI is three times higher than SREI, and two times higher in effective damping. As a result, the proposed FREI can replace the SREI as a seismic isolator.

The stability of semi-rigid skeletal structures accounting for shear deformations

  • Gorgun, Halil
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1065-1084
    • /
    • 2016
  • The analysis and design of skeletal structures is greatly influenced by the behaviour of beam-to-column connections, where patented designs have led to a wide range of types with differing structural quantities. The behaviour of beam-to-column connections plays an important role in the analysis and design of framed structures. This paper presents an overview of the influence of connection behaviour on structural stability, in the in-plane (bending) mode of sway. A computer-based method is presented for geometrically nonlinear plane frames with semi-rigid connections accounting for shear deformations. The analytical procedure employs transcendental modified stability functions to model the effect of axial force on the stiffness of members. The member stiffness matrix were found. The critical load has been searched as a suitable load parameter for the loss of stability of the system. Several examples are presented to demonstrate the validity of the analysis procedure. The method is readily implemented on a computer using matrix structural analysis techniques and is applicable for the efficient nonlinear analysis of frameworks. Combined with a parametric column effective length study, connection and frame stiffness are used to propose a method for the analysis of semi-rigid frames where column effective lengths are greatly reduced and second order (deflection induced) bending moments in the column may be distributed via the connectors to the beams, leading to significant economies.

An effective evaluation method for the subjective sensibility of linen-like silk (의마 가공된 견직물의 효율적인 주관적 감성평가 방법)

  • You, Ji-Ho;Lee, Jung-Soon
    • Korean Journal of Human Ecology
    • /
    • v.15 no.3
    • /
    • pp.439-447
    • /
    • 2006
  • The purpose of this study is to explore the accuracy and reliability of subjective evaluation instruments in evaluating sensibility of similar fabrics, Kendall's coefficient of concordance W (agreement among subjects) and Spearman rank correlation coefficient (reproducibility after 1 week) were used to evaluate which one is more efficient. Eight kinds of linen-like silk fabrics finished with polyurethane resin were used, Subjective evaluation instruments such as rating scale method, contrasting method against a control, rank ordering method, paired comparison and Quad analysis were used, 'Stiffness and Pliability' and 'Preference of summer fabric' were estimated, From the result of subjective stiffness and pliability, which are effective on objective properties of fabric, the rating scale method in Kendall's coefficient of concordance W and Quad analysis in Spearman rank correlation coefficient were given the highest score, From the result of subjective preference of summer fabric, which are effective on individual sensibility, contrasting method against a control in Kendall's coefficient of concordance W and Quad analysis in Spearman rank correlation coefficient revealed the highest score, Regarding the accuracy, reliability and efficiency, Quad analysis was an efficient method for subjective evaluation of linen-like silk fabrics.

  • PDF

An Experimental Study on Fiber Reinforced Elastomeric Bearing (섬유보강 면진베어링의 실험적 특성 해석)

  • 문병영;강경주;강범수;김계수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • In order to study the characteristics of fiber reinforced bearing, the steel plates of laminated rubber bearing were replaced with fibers which have same effects of steel plates. The comparison of vertical test and horizontal test of laminated rubber bearing and fiber reinforced bearing shows that the effective damping of fiber reinforced bearing is higher than laminated rubber bearing. This result implies the high energy dissipation ability of fiber reinforced bearing under earthquake excitation. These fiber reinforced bearing can be applied to the low-coast building.

Longitudinal Reinforcement Ratio for Performance-based Design of Reinforced Concrete Columns (철근콘크리트 기둥의 성능기반설계를 위한 주철근비)

  • Kim, Chang-Soo;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.187-197
    • /
    • 2010
  • The longitudinal reinforcement ratio for the performance-based design of columns was studied. Unlike the existing design codes using uniform minimum reinforcement ratio and effective stiffness for all columns, the longitudinal reinforcement ratio of columns was defined as the function of various design parameters. To evaluate the minimum reinforcement ratio, two conditions were considered: 1) prevention of passive yielding of compression re-bars due to the creep and shrinkage of concrete under sustained service loads; and 2) ultimate flexural strength greater than the cracking moment capacity to maintain the ductility of columns for earthquake design. In addition, the effective flexural stiffness of columns for structural analysis was determined according to the longitudinal reinforcement ratio. The design method addressing the three criteria was proposed. The proposed method was applied to a design example.