• Title/Summary/Keyword: effective rainfall

Search Result 493, Processing Time 0.022 seconds

Hysteresis of the Suction Stress in Unsaturated Weathered Mudstone Soils (불포화 이암풍화토에서의 흡입응력 이력현상)

  • Song, Young-Suk;Choi, Jin-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.3
    • /
    • pp.55-66
    • /
    • 2012
  • To investigate the hysteresis of the suction stress in unsaturated weathered mudstone soils (CL), matric suction and volumetric water content were measured in both drying and wetting processes using Automated Soil-Water Characteristics Curve Apparatus. The drying and wetting processes in unsaturated soils were reproduced in the test; the drying process means to load matric suction to spill pore water from the soils, and the wetting process means to unload matric suction to inject pore water into the soils. Based on the measured result, Soil Water Characteristic Curve(SWCC)s were estimated by van Genuchten model (1980). SWCCs have nonlinear relationship between effective degree of saturation and matric suction. The hysteresis in SWCCs between drying and wetting processes occurred. As a result of estimating Suction Stress Characteristic Curve(SSCC) using Lu and Likos model (2006), the suction stress rapidly increased in the low level of matric suction and then increased slightly. Also, the hysteresis in SSCCs between drying and wetting processes occurred. In order to design geo-structures and check its stability considering unsaturated soil mechanics, therefore, it is more reasonable that the SSCC of drying process should be applied in the condition of rainfall infiltration and the SSCC of wetting process in the condition of evaporation or drainage.

GIS-based Analysis of Debris-flow Characteristics in Gangwon-do (GIS를 이용한 강원지역 토석류 특성분석)

  • Ko, Suk Min;Lee, Seung Woo;Yune, Chan Young;Kim, Gi Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.1
    • /
    • pp.57-67
    • /
    • 2013
  • In Korea, there are debris-flow disasters induced by typhoon and localized torrential rainfall annually. There are particularly extensive debris-flow disasters in Gangwon-do because of its geomorphological characteristics; the extensive coverage of mountainous region, steep slope, and shallow soil. In this paper, we constructed a GIS database about topological characteristics of debris-flow basin in Gangwon-do by years of field survey. Also, we conducted frequency analysis based on this database with the digital forest type map and the digital soil map. We analyzed frequencies of debris-flow by simple count for topological characteristics, whereas we analyzed by considering an area ratio based on GIS for physiognomic and geologic characteristics. We used slope, aspect, width, depth and destruction shapes for analysis about topological characteristics of debris-flow basin. Also we used attributes of forest physiognomy, diameter, age, and density about physiognomic characteristics, and i n terms of geologic characteristics, we used attributes of drainage class, effective soil depth, subsoil properties, subsoil grave content, erosion class, parent material of soil, and topsoil properties. In consequence, we figured out topographic, forest physiognomic, and geologic characteristics of debris-flow basin. This result is applicable to establish a rational disaster prevention policy as a fundamental information.

Designing a Decentralized Stormwater Management Corridor for a Flood-Prone Watershed using Surface Runoff Analysis (지표유출수 분석을 통한 상습침수유역의 분산식 우수관리통로 설계)

  • Lee, Seul;Lee, Yumi
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.13-26
    • /
    • 2015
  • Many urban areas in Korea suffer from repeated flood damage during intensive rainfall due to an increase in impervious areas caused by rapid urbanization and deteriorating sewage systems. A centralized stormwater management system has caused severe flood damage in an area that has proven unable to accommodate recent climate change and a rise in precipitation. Most flooding prevention projects that have been recently implemented focus on increasing drainage system capacity by expanding the size of sewer pipes and adding pumping stations in downstream areas. However, such measures fail to provide sustainable solutions since they cannot solve fundamental problems to reduce surface runoff caused by urbanization across the watershed. A decentralized stormwater management system is needed that can minimize surface runoff and maximize localized retention capacity, while maintaining the existing drainage systems. This study proposes a stormwater management corridor for the flood-prone watershed in the city of Dongducheon. The corridor would connect the upstream, midstream, and downstream zones using various methods for reducing stormwater runoff. The research analyzed surface runoff patterns generated across the watershed using the Modified Rational Method considering the natural topography, land cover, and soil characteristics of each sub-watershed, as well as the urban fabric and land use. The expected effects of the design were verified by the retainable volume of stormwater runoff as based on the design application. The results suggest that an open space network serve as an urban green infrastructure, potentially expanding the functional and scenic values of the landscape. This method is more sustainable and effective than an engineering-based one, and can be applied to sustainable planning and management in flood-prone urban areas.

Development of Revegetation Methods Using Fresh Woodchip from Construction Works (건설현장 발생재를 활용한 비탈면 녹화에 관한 연구)

  • Nam, Sang-Jun;Kim, Kyung-Hoon;Yeo, Hwan-Joo;Jung, Ji-Jun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.3
    • /
    • pp.86-95
    • /
    • 2004
  • This study was conducted to develop recycle revegetation methods for the restoration of the steep slopes by using fresh wood chip from construction sites. In general, the fresh wood chips can be used as soil media for the restoration works, because they can increase infiltration of rainfall and give enough porous to breathe and elongate for the root growth as well as economic value. The experiment was carried out to compare the effect of fresh wood chips from different mixing with soil, organic material and macromolecular compound which used for slope restoration works conducted by Hyunwoo green(Ltd.). The main results by monitoring for two years are summarized as follows; 1. The soil media made with low percentage of fresh wood chip covered quickly by herb plants. Especially, the soil mixture Type C (wood chip 20%) showed 80 percent ground coverage within two months after seeding. 2. The soil mixture type E (wood chip 40%) and type F (wood chip 50%) which contains more fresh wood chips than soil type C was under 30 percent ground coverage because wood plants are germinated well. If the restoration works aims at making forest, then the soil type E and F would be recommended than using soil type C. 3. Among the woody plants, Ailanthus alfissima, Pinus rigida, Pinus densiflora, and Albizzia julibrissin showed high percentage of germination rates and vigorous growth. In case of shrubs, Lespedeza cyrtobotria and Indigofera pseudo-tintoria scored high percentage of germination rates. 4. In native plants, Chrysanthemum indicum, Artemisia princeps, Lutos corniculatus and Imperata cylindrica showed high percentage of appearance. In case of introduced herbs, Coreopsis lanceolata, Coreopsis tinctoria and Oenothera oborata grew so vigorously. 5. The soil types which including fresh wood chips over 30-40 percentage showed the most diverse plant composition and the most effective germination rates and growth pattern with woody plants. 6. This works to develop recycle revegetation methods using fresh wood chips need more efforts for monitoring the exact effect of fresh wood chips as the soil media.

Debris Flow Analysis of Landslide Area in Inje Using GIS (GIS를 이용한 인제 산사태발생지역의 토석류 분석)

  • Kim, Gi-Hong;Yune, Chan-Young;Lee, Hwan-Gil;Hwang, Jae-Seon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.1
    • /
    • pp.47-53
    • /
    • 2011
  • From 12 to 16 July 2006, 4 days' torrential rainfall in Deoksan-ri, Inje-up, Inje-gun, Gangwon-do caused massive landslide and debris flow. Huge losses of both life and property, including two people buried to death in submerged houses, resulted from this disaster. As the affected region is mostly mountainous, it was difficult to approach the region and to estimate the exact extent of damage. But using aerial photographs, we can define the region and assess the damage quickly and accurately. In this study the debris flow region in inje, Gangwon-do was analyzed using aerial photographs. This region was divided into three sections - beginning section, flow section and sedimentation section. Informations for each section were extracted by digitizing the shot images with visual reading. Topographic, forest physiognomic and soil characteristics and debris flow occurrences of this region were analyzed by overlaying topographic map, forest type map and soil map using GIS. Comprehensive analysis shows that landslide begins at slope of about $36^{\circ}$, flows down at $26^{\circ}$ slope, and at $21^{\circ}$ slope it stops flowing and deposits. Among forest physiognomic factors, species of trees showd significant relationship with debris flow. And among soil factors, effective soil depth, soil erosion class, and parent materials showed meaningful relationship with debris flow.

The Study on the Irrigation Water Control in the Cultivation of Rice Plants (수도작에 있어서 물관리에 대한 연구)

  • 이창구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.8 no.2
    • /
    • pp.1193-1199
    • /
    • 1966
  • More stable and higher yields in rice paddy depend mainly upon an adequately balanced supply of water for higher yield. Rice paddy is supplied naturally by rainfall but inevitably requires artificial supplenental irrigation for higher yields. Even though it may be true that the water requirement of rice plants is generally higher than those of other crops, the submerged condition is not necessarily required for rice. The moisture requirements of rice vary according to its growing stages and it is possible to increse the irrigation efficiency by means of lessening the loss due to percolation and evapolation in the field. This experiment was conducted on the effect of the various amount of water supply and different irrigation periods for yield and yield components, and was carried out to find out the most suitable irrigation method and to increase the irrigation efficiency for higher yields in rice paddy. Randomized block design with 3 replications was employed where the 3 levels of the amount of irrigation water; (120% moisture contents), unirrigated (90~100%) and more un irrigated candition (80~90% moisture content), and levels of the various irrigation periods; usual, initial, intermediate and final periods, being treated. The results obtained in this experiment are as follows: 1. As for the physical and chemical and soil properfies, and other characteristics, there are no differences among the treatments enough to be effective for the growth of rice plants. 2. Culm length was measured after harvest as shown in table 2. 3. Difference of the amount of irrigation water did not change the culm length and ear length, however it also indicated more apparent increase in final treatment plots thatn that of usual. 3. No difference in the number of ears and number of ears pers per hill was founded treatments both in the difference of water supply and in the various irrigation periods. 4. There is no difference in the maturing rate and 1000 grains weight. 5. The number of panicles and grains and more increased in 80~100% moisture contents soil than those of 120%. and it shows in un irrigated plots, more irrigated plots and control plots in turn. Other wise according to the period\ulcorner of irrigation the trend is appeared in turn initial, usual, final and intermediate treatments.6. Yield as shown in table 7. 8 was more increased in unirrigated plots(90~IOO% moisture content) than the control plots (120% moisture content) by up to 8.2% and also 3. 2% in more unirrigated plots than that of control by periods is shown: usual plots final, initial, inter mediate treatment plots in turn. 7. The above resutts lead to the conclusion that no remarkable, differences in yields and soil properties are made by the unirrigation. However, it is apparent that this treatment has .some advantages in the points that one could spare the amount of water supply for irrigation with more increase in yield. In addition, a higher temperature and a brisk oxygen supply would be possible throug h this treatments. Accordingly, these treatment would be a more reasonable and economical cultivation method of rice for the better harvest.

  • PDF

Application of Regional Landslide Susceptibility, Possibility, and Risk Assessment Techniques Using GIS (GIS를 이용한 광역적 산사태 취약성, 가능성, 위험성 평가 기법 적용)

  • 이사로
    • Economic and Environmental Geology
    • /
    • v.34 no.4
    • /
    • pp.385-394
    • /
    • 2001
  • There are serious damage of people and properties every year due to landslides that are occurred by heavy rain. Because these phenomena repeat and the heavy rain is not an atmospheric anomaly, the counter plan becomes necessary. The study area, Ulsan, is one of the seven metropolitan, and largest cities of Korea and has many large facilities such as petrochemical complex and factories of automobile and shipbuilding. So it is necessary assess the landslide hazard potential. In the study. the three steps of landslide hazard assessment techniques such as susceptibility, possibility, and risk were performed to the study area using GIS. For the analyses, the topographic, geologic, soil, forest, meteorological, and population and facility spatial database were constructed. Landslide susceptibility representing how susceptible to a given area was assessed by overlay of the slope, aspect, curvature of topography from the topographic DB, type, material, drainage and effective thickness of soil from the soil DB, lype age, diameter and density from forest DB and land use. Then landslide possibility representing how possible to landslide was assessed by overlay of the susceptibility and rainfall frequency map, Finally, landslide risk representing how dangerous to people and facility was assessed by overlay of the possibil. ity and the population and facility density maps The assessment results can be used to urban and land use plan for landslide hazard prevention.

  • PDF

Study on Shear Strength Using a Portable Dynamic Cone Penetration Test and Relationship between N-Nc (소형동적콘관입시험을 이용한 전단강도 산정 및 N-Nc 상관관계 연구)

  • Kim, Hyukho;Lim, Heuidae
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.145-157
    • /
    • 2017
  • Because of Recent intensive rainfall, nationally landslides and slope failure phenomenon has been frequently occur. Providing proposed-measures to the natural disasters that occur in these localities and the slope, must be derived ground of strength parameters(shear strength) as a design input data. However, it is such as extra deforestation and a lot of economic costs in order to make the access to the current area and the slopes ground survey is required. Thus, by small dynamic cone penetration test machine using the human to carry in the field, it is possible to easily measure the characteristics and strength constant of the ground of more than one region. In this study through researching analysis of the domestic and foreign small dynamic cone penetration test method, it has proposed a cone material and test methods suitable for the country. Cone penetration test Nc in the field has comparated with analysis of the value and the standard penetration test N value. And, in addition to this, direct shear test and borehole shear test were performed by depth, bedrock, and soil type and passing #200 and the correlation of the Nc value. In particular, in the present study, for the sandy soil that has distict distribute in mountain, it is proposed relation of shear strength corresponding to the Nc value (cohesion and internal friction angle) in order to calculate such effective ground shear strength.

Determination of Optimal Operation Water Level of Rain Water Pump Station using Optimization Technique (최적화 기법을 이용한 빗물펌프장 최적 운영수위 결정)

  • Sim, Kyu-Bum;Yoo, Do-Guen;Kim, Eung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.337-342
    • /
    • 2018
  • A rain water pumping station is a structural countermeasure to inland flooding of domestic water generated in a urban watershed. In this study, the optimal operation water level of the pump with the minimum overflow was determined based on the opinions of the person in charge of the operation of the rain water pump station. A GA (Genetic Algorithm), which is an optimization technique, was used to estimate the optimal operation water level of the rain water pump station and was linked with SWMM (Ver.5.1) DLL, which is a rainfall-runoff model of an urban watershed. Considering the time required to maximize the efficiency of the pump, the optimal operating water level was estimated. As a result, the overall water level decreased at a lower operating water level than the existing water level. For most pumps, the lowest operating water level was selected for the operating range of each pump unit. The operation of the initial pump could reduce the amount of overflow, and there was no change in the overflow reduction, even after changing the operation condition of the pump. Internal water flooding reduction was calculated to be 1%~2%, and the overflow occurring in the downstream area was reduced. The operating point of the pump was judged to be an effective operation from a mechanical and practical point of view. A consideration of the operating conditions of the pump in future, will be helpful for improving the efficiency of the pump and to reducing inland flooding.

Improvement and Application of Pump Station Operating System and Economic Analysis of the Application (빗물펌프장 운영시스템 개선 및 적용과 경제효과분석)

  • Joo, Jin- Gul;Yoo, Do-Guen;Yang, Jae-Mo;Jung, Dong-Hwi;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.155-165
    • /
    • 2010
  • In low-lying districts of urban areas, pump stations were built to protect flooding by the heavy rain. Particularly, the automatic pump operation system was installed for efficiency in the pump stations of Seoul. However, the effective pump operation is difficult under existing operating system because the system only performs operation by reservoir depth. This study would like to improve the real time operating system suggested by Jun et al.(2007) and to apply the system Gasan 1 pump station in Seoul. For various design rainfall events, maximum water levels simulated by the suggested system were 10~70cm lower than results by the existing system. And overflow volume at upstream manholes were 50% reduced. We converted the flood control effects by establishment of the suggested system to economic indicators. To obtain the same effect, approximately 4.9 billion won needs to expand pump capacities or 3.2~6.9 hundreds million won needs to construct storm water detention on upstream area. The suggested system could improve the flood control stability by efficient operation of the existing pump station.