• Title/Summary/Keyword: effective permeability

Search Result 536, Processing Time 0.031 seconds

A Simple Method for Preserving Underground Water Resources in Volcanic Island (Jeju)

  • Hwang, Junhyuk;Ban, Hoki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.9
    • /
    • pp.29-35
    • /
    • 2016
  • Being mostly made up of highly permeable basalt and volcanic ash soil, Jeju Island's lithosphere characterizes its streams to be dry, flowing only when precipitation is happening. Under this condition, this research was motivated to identify the need of conservation of underground water, which is taking up most of (84% of) Jeju's water usage, and made an attempt to reduce the permeability of stream beds so that it can replace underground water and be used instead. To this end, this study suggested a simple method to make dry streams to carry water all-year-round by reducing permeability of stream floor. The experiment of permeability was performed on the porous basalt and compared it with that of same basalt with volcanic ash soil and Jumunjin sand layer added on top. The results showed a dramatic decrease in permeability of water when both volcanic ash soil and Jumunjin sand is were layered on top of porous basalt. Despite being gained in a controlled environment with a simple test, this result may provide a realistic and effective method of preserving Jeju Island's underground water which ultimately is a method of resolving water related issues.

An assessment of the mechanical behavior of zeolite tuff used in permeable reactive barriers

  • Cevikbilen, Gokhan
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.305-318
    • /
    • 2022
  • Permeable reactive barriers used for groundwater treatment require proper estimation of the reactive material behavior regarding the emplacement method. This study evaluates the dry emplacement of zeolite (clinoptilolite) to be used as a reactive material in the barrier by carrying out several geotechnical laboratory tests. Dry zeolite samples, exhibited higher wetting-induced compression strains at the higher vertical stresses, up to 12% at 400 kN/m2. The swelling potential was observed to be limited with a 3.5 swell index and less than 1% free swelling strain. Direct shear tests revealed that inundation reduces the shear strength of a dry zeolite column by a maximum of 10%. Falling head permeability tests indicate decreasing permeability values with increasing the vertical effective stress. Regarding self-loading and inundation, the porosity along the zeolite column was calculated using a proposed 1D numerical model to predict the permeability with depth considering the laboratory tests. The calculated discharge efficiency was significantly decreased with depth and less than 2% relative to the top for barrier depths deeper than 20 m. Finally, the importance of directional dependence in the permeability of the zeolite medium for calibrating 2D finite element flow analysis was highlighted by bench-scale tests performed under 2D flow conditions.

Influence of burial conditions on the seepage characteristics of uranium bearing loose sandstone

  • Quan Jiang;Mingtao Jia;Yihan Yang;Qi Xu;Chuanfei Zhang;Xiangxue Zhang;Meifang Chen
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1357-1371
    • /
    • 2024
  • To investigate the influence of different burial conditions on the seepage characteristics of loose sandstone in the leaching mining of sandstone uranium ore, this study applied different ground pressures and water pressures to rock samples at different burial depths to alter the rock's seepage characteristics. The permeability, pore distribution, and particle distribution characteristic parameters were determined, and the results showed that at the same burial depth, ground pressure had a greater effect on the reduction in permeability than water pressure. The patterns and mechanisms are as follows: under the influence of ground pressure, increasing the burial depth compresses the pores in the rock samples, decreases the proportion of effective permeable pores, and causes particle fragmentation, which blocks pore channels, resulting in a decrease in permeability. Under the influence of water pressure, increasing the burial depth expands the pores but also causes hard clay particles to decompose and block pore channels. As the burial depth increases, the particles eventually decompose completely, and the permeability initially decreases and then increases. In this experiment, the relationships between permeability and the proportion of pores larger than 0.15 ㎛ and the proportion of particles smaller than 59 ㎛ were found to be the most significant.

Groundwater inflow rate estimation considering excavation-induced permeability reduction in the vicinity of a tunnel (터널 굴착으로 인한 터널인접 절리암반 투수계수 감소를 고려한 터널 내 지하수 유입량 산정방법)

  • Moon, Joon-Shik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.333-344
    • /
    • 2013
  • This paper discussed about the effect of permeability reduction of the jointed rock mass in the vicinity of a tunnel which is one of the reasons making large difference between the estimated ground-water inflow rate and the measured value. Current practice assumes that the jointed rock mass around a tunnel is a homogeneous, isotropic porous medium with constant permeability. However, in actual condition the permeability of a jointed rock mass varies with the change of effective stress condition around a tunnel, and in turn effective stress condition is affected by the ground water flow in the jointed rock mass around the tunnel. In short time after tunnel excavation, large increase of effective tangential stress around a tunnel due to stress concentration and pore-water pressure drop, and consequently large joint closure followed by significant permeability reduction of jointed rock mass in the vicinity of a tunnel takes place. A significant pore-water pressure drop takes place across this ring zone in the vicinity of a tunnel, and the actual pore-water pressure distribution around a tunnel shows large difference from the value estimated by an analytical solution assuming the jointed rock mass around the tunnel as a homogeneous, isotropic medium. This paper presents the analytical solution estimating pore-water pressure distribution and ground-water inflow rate into a tunnel based on the concept of hydro-mechanically coupled behavior of a jointed rock mass and the solution is verified by numerical analysis.

Characteristics of Material Function Related to Permeability and Compressibility for Soft Clay Ground (투수 및 압축에 대한 연약 점토지반의 물질함수 특성)

  • Lee, Song;Jeon, Je-Sung;Yi, Chang-Tok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.183-194
    • /
    • 2004
  • It's essential process to study non-linear material function related to characteristics of compressibility and permeability when we predict the consolidation behavior of soft clay ground. In this study, laboratory tests were conducted to find out the material function using marine clay. Standard oedometer test and Rowe cell test were performed with conditions, which were classified into vertical drainage only, radial drainage only and vertical-radial drainage case. Modified oedometer test equipment was developed to find out the material function and special extrusion device was originated to minimize the sample disturbance effect. Reliability of the results in modified oedometer test could be confirmed by comparing with the Rowe cell's one. Effective stress - void ratio - permeability relations were analyzed using all testing results. As a result, void ratio with effective stress level could be expressed by the power function and permeability with void ratio could be expressed by exponential function. In soft clay with high initial water content and low shear strength, non-linear characteristics related to compressibility and permeability varied with wide range by the effective stress levels. It's important to note that non-linearity of the material function should be considered at prediction of the consolidation behavior.

Current Distribution and Effective Resistance in the Rail of a Distributed-type Railgun (분포형 레일건 레일에서의 전류분포 및 실효저항)

  • 임달호;구태만
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.10
    • /
    • pp.694-701
    • /
    • 1988
  • Distributed-type railguns are designed to maintain the armature current and the length between the armature and the current-feed region nearly constant with time. This paper deals with factors affecting current distribution, effective resistance and effective skin depth in the rail of a distributed-type railgun. Analytical solutions for the current distributions and resistance in the rail are presented for a simple two-dimensional model under steady-state contions. For diffusion limited current, it is found that effective rail resistance is proportional to the square root of the relative velocity, the permeability of the rail and the length between the armature and that effective skin depth of the rail is proportional to the square root of the length and inversely proportional to the square root of the permeability, the conductivity and the velocity.

Effect of Paper Properties on the Performance of a Enthalpy Exchanger (종이 물성이 전열교환 엘리먼트 성능에 미치는 영향)

  • Kim, Nae-Hyun;Cho, Jin-Pyo;Song, Gil-Sup;Kim, Dong-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.414-418
    • /
    • 2008
  • The effects of paper properties such as density, air permeability, water vapor transmission rate on the thermal performance of plate-type enthalpy exchanger were experimentally investigated. Three enthalpy exchanger samples having different properties were made, and were tested according to the standard test procedure (KS B 6879). Effective efficiencies were defined, which accounted for the air leakage between supply and exhaust streams. Results showed that paper density affected the sensible heat transfer of the samples. Sensible heat transfer increased with density of the paper. It was also shown that water vapor transmission rate alone was not a proper indicator for the efficiency of latent heat transfer. Air permeability should also be considered for adequate evaluation of the latent heat transfer. Best performance was obtained for the sample having highest paper density and moderate water vapor transmission ratio.

  • PDF

A Study on the Infiltration Porperties of Cement Grout Material (시멘트계 주입재의 침투특성에 관한 실험적 연구)

  • 천병식;신동훈;이종욱;김진춘;이준우;안익균;이승범
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.297-304
    • /
    • 2002
  • This study is about penetrability of Micro Cement(MC) used for ground improvement. In this study, the characteristics of chemical grouting such as solidification, penetrability were analyzed experimentally by changing permeability of ground, grain size and relative density of grout material. For evaluating applicability of grout material, solidification test and penetrability test were performed. From the results of the tests, effective solidification ratio and penetrability ratio of MC was each 75%, 86% to be excellent when ground permeability was in the range of 10$^{-2}$ and 10$^{-4}$ cm/sec. Otherwise, those of Ordinary Portland Cement(OPC) were both lower than 50% to be poor. When penetrability of grout material is needed for improvement of dam foundation and soft ground, application of MC Is much superior to that of the other materials. The results of the grouting tests in the water flowing ground show that solidification effect of long gel-time grout material is excellent as injection pressure increases when groundwater velocity is relatively low. But when groundwater velocity is relatively high, solidification effect of long gel-time grout material is very poor because most grout materials are outflowed. Therefore, as groundwater velocity is high, effective solidification ratio of long gel-time grout material is better than that of short gel-time grout material, also penetration distance of long gel-time grout material is longer than that of short gel-time grout material.

  • PDF

A Study of Structures and Magnetic Properties of Electrodeposited Fe-45 wt%Ni-P Alloys (전착법에 의한 Fe-45 wt%Ni-P 합금의 조직과 자기적 성질에 관한 연구)

  • 구승현;이흥렬;김동환;황태진;임태홍
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.6
    • /
    • pp.461-465
    • /
    • 2003
  • The microstructures and magnetic properties of electrodeposited Fe-45 wt%Ni-P alloys have been investigated. The structures of electrodeposited Fe-45 wt%Ni alloy was FCC i.e. ${\gamma}$ phase and the size of crystallite was 10 nm. The structure of electrodeposited Fe-45 wt%Ni-1 wt%P alloy showed ${\gamma}$ phase and 7 nm sized nanocrystalline. The electrodeposited Fe-45 wt%Ni-P alloys containing 2∼3 wt% of P exhibited ${\gamma}$$\alpha$ dual phases. The electrodeposited Fe-45 wt%Ni-P alloys above 3.5 wt% showed an amorphous structure. P in the alloys acted grain refining and phase changing element. The resistivity of the electrodeposited alloys increased with P contents. Effective permeability at high frequency (above 1 MHz) increased with P contents up to 2 wt% and this was ascribed to the easier magnetization rotation owing to the reduction of eddy current. Effective permeability decreased with P contents above 3 wt% and this was ascribed to the transformation of the ferromagnetism of Fe-45 wt%Ni alloy gradually into paramagnetism with the introduction of P into the electrodeposited alloy matrix.

A Study on Various Effecting Factors on Water Proofing Properties of Cement Mortar (시멘트 몰탈의 방수성능에 미치는 제반 영향인자에 관한 연구)

  • 신도철;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.100-105
    • /
    • 1995
  • The aim of this study is to developed water proofing properties of cement mortar this study the effect of mix proportion on the basic characteristics of cement mortar was investigated. Also water absorption and permeability properties of mortar using several admixtures were tested. from this results, Physical properties of mortar is improved by using the sand witch has a broad particle size distribution. Also the sililca alumina powder is effective for decreasing the water permeability of mortar and zinc stearate is in creasing the water repellence property.

  • PDF