• Title/Summary/Keyword: effective moment of inertia

Search Result 74, Processing Time 0.04 seconds

Experimental Evaluation on Effective Moment of Inertia of Reinforced Concrete Simple Beams and Continuos Beams Considering Tension Stiffening Effect (인장증강효과를 고려한 철근콘크리트 단순보와 연속보의 유효 단면2차모멘트에 대한 실험적 검증)

  • Lee, Seung-Bae;Yoon, Hyeong-Jae;Kim, Kang-Su;Kim, Sang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.285-288
    • /
    • 2008
  • A model for the effective moment of inertia $I_{\epsilon}$ as expressed in Branson's equation, in which reduction of the flexural rigidity of RC beams due to cracking are aptly taken into accoun,t is presented. However, KCI Code isn`t considered tension stiffening as it is in debonding of reinforcing bar. Therefore, this equation need to set up suitable to our design Code. The experimental work consisted of casting and testing a total of 6 simply supported reinforced concrete beams and a total of 4 continuos reinforced concrete beams under two point concentrated loads. Main parameters are concrete strength, coverage, bond between concrete and reinforcing bars, are known as have an effect on deflection and tension stiffening. Every test beams had the same $250{\times}350$mm rectangular section, with a simply supported clear span of 4,400 mm and a continuos clear span of 6,500 mm. Comparison of the test results with values obtained using the KCI Code equation of the effective moment of inertia showed a noticeable difference.

  • PDF

Mechanical Properties of Reinforced Concrete Slabs at Early Ages (초기재령 콘크리트 슬래브의 처짐 예측)

  • 신성우;유석형;오성진;황동규;박기홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.397-400
    • /
    • 2002
  • The mechanical properties of concrete such as modulus of elasticity, bond strength and shear strength are proportional to square root of compressive strength. And compressive strength of concrete is developed rapidly at early ages. Thus the relationship between compressive strength and its mechanical properties should be verified because the mechanical properties of early age concrete and hardened concrete are different. In this study, to predict the concrete slab deflection at early ages, modulus of elasticity and effective moment of inertia(Ie) are observed and compared with experimental results.

  • PDF

Real-Time Estimation of Yaw Moment of Inertia of a Travelling Heavy Duty Truck (주행하는 대형 트럭의 요관성모멘트 실시간 추정)

  • Lee, Seung-Yong;Nakano, Kimihiko;Kim, Se-Kwang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.205-211
    • /
    • 2017
  • To achieve an advanced control of automobiles, it is necessary to acquire the values of the parameters of a vehicle in real time to conduct precise vehicle control practices such as automatic platooning control. Vehicle control is especially required in controlling trucks, as the mass and inertia change widely according to the loading conditions. Thereafter, we propose to estimate the yaw moment of inertia of the truck in real-time during travelling, by applying the dual Kalman filter algorithm, which estimates the state variables and values of the parameters simultaneously in real-time. The simulation results show that the proposed method is effective for the estimation, which uses commercial software for simulating and analyzing the vehicle dynamics.

Flexural Behavior of Concrete Beams Reinforced with CFRP rebars (CFRP Rebar로 보강한 콘크리트 보의 휨 거동)

  • Lee, Young-Hak;Won, Dong-Min;Kim, Min-Sook;Kim, Hee-Cheul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • To address the problems caused by the corrosion of steel rebar, active research has recently been carried out on members where fiber-reinforced polymer (FRP) is used in place of rebar. As FRP bar is highly brittle and has a low modulus of elasticity, further research is needed on the evaluation of serviceability, in other words on the deflection of flexural concrete members reinforced with FRP rebars. Taking the reinforcement ratio as a variable, this paper analyzes the flexural capacity of concrete beams reinforced with CFRP rebar. The test results of specimens reinforced with CFRP rebar show an increase in stiffness and resisting force along with an increase in the reinforcement ratio. A reinforcement ratio of about 1.3 is needed for the member reinforced with CFRP rebar to show same section property of a steel member. Through a comparison for the value of an effective moment of inertia, the equation suggested by Bischoff & Scanlon predicted values closest to the actual results.

An Experimental Study on the Flexural Stiffness and Plastic Hinge Ratation Capacity of Reinforced High Performance Concrete Beams (고성능 철근콘크리트 보의 휨강성 및 소성힌지의 회전능력에 관한 실험적 연구)

  • 고만영;김상우;김용부
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.93-100
    • /
    • 1998
  • This paper presents a study on the flexural stiffness, plastic hinge length and plastic hinge rotation capacity of reinforced high performance concrete beams. 15 beams with different strength of concrete, reinforcement ratio and the pattern of loadings were tested. From the test results of reinforced normal strength concrete beams and reinforced high performance concrete beams with the concrete which has cylinder compressive strength of 700kg/${cm}^2$, slump value of 20~25cm and slump-flow value of 60~70cm. It is found that an extreme fiber concrete compressive strain of ${\varepsilon}_{cu}=0.0047$ may be used in ultimate curvature computations of reinforced high performance concrete beams. An empirical equation is proposed to estimate the effective moment of inertia. length and rotation capacity of plastic hinge of simply supported reinforced high performance concrete beams. The estimated deflections using this equation agree well with the experimental values.

Effective length factors for the framed columns with variable stiffness (골조구성 변단면 기둥의 유효길이 계수)

  • 이수곤;김순철;오금열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.175-182
    • /
    • 2001
  • Effective length factor approach for framed column design has long played an important design-aid role. This approach, however, is effective only when the columns are in the form of prismatic or uniform cross sections. Structural engineers who have to design or analyse framed columns with variable cross sections need some means to do their job. By using the finite element method, the stability analysis of the isolated compression members with variable cross sections and that of the framed columns are performed. The parameters considered in the stability analysis are taper and sectional property parameters of the columns, the second moment of inertia ratio of beam to column, and beam span to column height ratio. On the basis of the stability analysis results, effective length factor formulas for the columns with variable sections are derived.

  • PDF

New stability equation for columns in unbraced frames

  • Essa, Hesham S.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.411-425
    • /
    • 1998
  • The effective length factor of a framed column may be determined by means of the alignment chart procedure. This method is based on many unrealistic assumptions, among which is that all columns have the same stiffness parameter, which is dependent on the length, axial load, and moment of inertia of the column. A new approximate method is developed for the determination of effective length factors for columns in unbraced frames. This method takes into account the effects of inelastic column behaviour, far end conditions of the restraining beams and columns, semi-rigid beam-to-column connections, and differentiated stiffness parameters of columns. This method may be implemented on a microcomputer. A numerical study was carried out to demonstrate the extent to which the involved parameters affect the K factor. The beam-to-column connection stiffness, the stiffness parameter of columns, and the far end conditions of restraining members have a significant effect on the K factor of the column under investigation. The developed method is recommended for design purposes.

Neural Identifier of a Two Joint Robot Manipulator (신경회로망을 이용한 2축 매니퓰레이터 동정화)

  • 이민호;이수영;박철훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.1
    • /
    • pp.291-299
    • /
    • 1996
  • A new identification method using a higher order multilayer neural network is proposed for identifying a complex dynamic system such as a robotic manipulator. The input torque data for learning of the neural identifier are generated for producing effective output trajectories by a minimization process of a specific performance index function which indicates the difference between the reference points and the present joint positions and their velocities of the robotic manipulator. Computer simulation results show that the proposed identification method is very effective for identifying the systems with complex dynamics and large moment of inertia.

  • PDF

Development of Serviceability Model for RC Flexural Members (철근콘크리트 휨부재의 사용성 모델 개발)

  • Lee, Ki-Yeol;Kim, Jang-Hyun;Ha, Tae-Gwan;Kim, Dae-Joong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.413-416
    • /
    • 2004
  • This paper describes a proposal for crack width and deflection in RC flexural members. Because the serviceability provisions of the current codes are mainly based on only empirical relationships developed from test result and effective moment of inertia, crack width and deflections are contrary to the actual values. Based on nonlinear bond characteristics, tension stiffening effect, arch action and effective concrete tensile area. Then an equation is developed for predicting crack width and deflection in flexural members. The predicted results shows that as proposed model employed, crack width and deflections are different from estimated by the current KCI, MC 90 and EC 2 provisons, and the values predicted are in good agreement with experimentally measured values.

  • PDF

Free vibration of a rectangular plate with an attached three-degree-of-freedom spring-mass system

  • Febbo, M.;Bambill, D.V.;Rossi, R.E.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.637-654
    • /
    • 2011
  • The present paper studies the variation of the natural frequencies and mode shapes of rectangular plates carrying a three degree-of-freedom spring-mass system (subsystem), when the subsystem changes (stiffness, mass, moment of inertia, location). An analytical approach based on Lagrange multipliers as well as a finite element formulation are employed and compared. Numerically reliable results are presented for the first time, illustrating the convenience of using the present analytical method which requires only the solution of a linear eigenvalue problem. Results obtained through the variation of the mass, stiffness and moment of inertia of the 3-DOF system can be understood under the effective mass concept or Rayleigh's statement. The analysis of frequency values of the whole system, when the 3-DOF system approaches or moves away from the center, shows that the variations depend on each particular mode of vibration. When the 3-DOF system is placed in the center of the plate, "new" modes are found to be a combination of the subsystem's modes (two rotations, traslation) and the bare plate's modes that possess the same symmetry. This situation no longer exists as the 3-DOF system moves away from the center of the plate, since different bare plate's modes enable distinct motions of the 3-DOF system contributing differently to the "new' modes as its location is modified. Also the natural frequencies of the compound system are nearly uncoupled have been calculated by means of a first order eigenvalue perturbation analysis.