• Title/Summary/Keyword: effective length of cable

Search Result 34, Processing Time 0.031 seconds

Determination of stay cable force based on effective vibration length accurately estimated from multiple measurements

  • Chen, Chien-Chou;Wu, Wen-Hwa;Huang, Chin-Hui;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • v.11 no.4
    • /
    • pp.411-433
    • /
    • 2013
  • Due to its easy operation and wide applicability, the ambient vibration method is commonly adopted to determine the cable force by first identifying the cable frequencies from the vibration signals. With given vibration length and flexural rigidity, an analytical or empirical formula is then used with these cable frequencies to calculate the cable force. It is, however, usually difficult to decide the two required parameters, especially the vibration length due to uncertain boundary constraints. To tackle this problem, a new concept of combining the modal frequencies and mode shape ratios is fully explored in this study for developing an accurate method merely based on ambient vibration measurements. A simply supported beam model with an axial tension is adopted and the effective vibration length of cable is then independently determined based on the mode shape ratios identified from the synchronized measurements. With the effective vibration length obtained and the identified modal frequencies, the cable force and flexural rigidity can then be solved using simple linear regression techniques. The feasibility and accuracy of the proposed method is extensively verified with demonstrative numerical examples and actual applications to different cable-stayed bridges. Furthermore, several important issues in engineering practice such as the number of sensors and selection of modes are also thoroughly investigated.

A Study on Tension for Cables of a Cable-stayed Bridge Damper is Attached (댐퍼가 부착된 사장교의 케이블 장력에 관한연구)

  • Park, Yeon Soo;Choi, Sun Min;Yang, Won Yeol;Hong, Hye Jin;Kim, Woon Hyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.609-616
    • /
    • 2008
  • Recently, many ocean bridges that connect land to island or island to island have been constructed along with the improvement of the nation's economy. Long-span bridges can be categorized as suspension bridge, cable-stayed bridge, arch bridge and truss bridge. In this study, correction with respect to construction error can be presented on site through the monitoring of the cable tension change of real structure for four major construction stages so that construction accuracy, including the management of profiles, can be improved. A vibration method, the so-called indirect method that uses the cable's natural frequency changes from the acceleration sensor installed on the cable, is applied in measuring cable tension. In this study, the estimation formula for the effective length of cable with damper is presented by comparing and analyzing between actual measurement and analysis result for the change of the cable's effective length. By the way, it is known that the reliability of estimating cable tension by applying the former method that uses the net distance from damper to anchorage is low. Therefore, for future reference of the maintenance stage, the presented formula for estimating the effective length of cable can be used as a reference for the rational decision-making, such as the re-tensioning and replacement of cable.

An Improved Stability Design of Steel Cable-Stayed Bridges using Second-Order Effect (2차효과를 고려한 강사장교의 개선된 좌굴해석)

  • Kyung Yong-Soo;Kim Nam-Il;Lee Jun-Sok;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.993-1000
    • /
    • 2006
  • Practical stability design method of main members of cable-stayed bridges is proposed and discussed through a design example. For this purpose, initial tensions of stay cables and axial forces of main members are firstly determined using initial shaping analysis of bridges under dead loads. And then the effective buckling length using system elastic/inelastic buckling analysis and bending moments considering $P-{\delta}-{\Delta}$ effect by second-order elastic analysis are calculated for main girder and pylon members subjected to both axial forces and moments, respectively. Particularly, load combinations of dead and live loads, in which maximum load effects due to live loads are obtained, are taken into account and effects of live loads on effective buckling lengths are investigated.

  • PDF

An Installation of 154kV XLPE CABLE in Steep Slope Condition (고낙차 조건에서의 154kV XLPE CABLE 설치)

  • Hwang, Soon-Chul;Lee, Chang-Su;Lee, Cheon-Ku;Goh, Chang-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.775-778
    • /
    • 1992
  • In 1980, 154kV OF cable was installed at the Cheong-Pyeong pumped-storage power station. Effective head of this pumped-storage station is 250m between upper and lower re-servior and length of cable route is 750m. However, several failures have happened owing to steep slope during the operation. 154 kV XLPE cable was applied for this power station to eliminate a lack of stability on account of steep slope and successfully installed in 1991. Meanwhile, installation procedure brings about many problem to be solved. In this paper, we describe the counter measure of cable sliding phenomena caused by heat shrinkage as well as the method of installation of cable under the steep slope condition. And hereafter, we think this paper will be a good reference to design and installation of 154kV XLPE cables in steep slope turnnel at urban areas.

  • PDF

Determination of the Accurate Effective Length for Buckling Design of Cable-Supported Bridges (케이블지지교량의 좌굴설계를 위한 유효좌굴길이 산정)

  • Jin, Man Sik;Kyoung, Yong Soo;Lee, Myung Jae;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.355-363
    • /
    • 2004
  • In order to obtain the effective length factor of beam-column members of plane frames, this paper extensively used an alignment chart approach, based on the nomograph given in LRFD-AISC specification commentaries. However, it should be noted that various simplifications and assumptions were introduced in constructing the alignment chart. To overcome the practical limitations of the alignment chart, this paper proposes a simple but accurate procedure that determined the effective buckling length for stability design of main members of cable-supported bridges. This method requires the full system buckling analysis. The numerical examples showing the suitability of the present scheme are discussed and some conclusions are drawn.

Effects of Partially Earth Anchored Cable System on Safety Improvement for a Long-span Cable-stayed Bridge under Seismic and Wind Load (장경간 사장교에 적용된 일부타정식 케이블 시스템의 지진하중과 풍하중 안전성 향상 효과 분석)

  • Won, Jeong-Hun;Lee, Hyung Do
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.97-103
    • /
    • 2016
  • This study investigates effects of partially earth anchored cable system on the structural safety for a long-span cable-stayed bridge under dynamic loads such as seismic and wind load. For a three span cable-stayed bridge with a main span length of 810 m, two models are analyzed and compared; one is a bridge model with a self anchored cable system, the other is a bridge model with a partially earth anchored cable system. By performing multi-mode spectrum analysis for a prescribed seismic load and multi-mode buffeting analysis for a fluctuating wind component, the structural response of two models are compared. From results, the partially earth anchored cable system reduce the maximum pylon moment by 66% since earth anchored cables affect the natural frequencies of girder vertical modes and pylon longitudinal modes. In addition, the girder axial forces are decreased, specially the decrement of the axial force is large in seismic load, while girder moment is slightly increased. Thus, the partially earth anchored cable system is effective system not only on reduction of girder axial forces but also improvement of structural safety of a cable-stayed bridge under dynamic loads such as seismic and wind loads.

Application of Time Domain Reflectometry to the Monitoring or Rock Mass Deformation with Coaxial Cable (동축 케이블을 이용한 시간영역 반사법의 암반변위 계측에의 적용)

  • 정슬람;정소걸;정현기;박철환;박철환;이희근
    • Tunnel and Underground Space
    • /
    • v.6 no.4
    • /
    • pp.306-315
    • /
    • 1996
  • This paper presents an application of the TDR(Time Domain Reflectometry) to the monitoring of the deformation of rock mass with grouted coaxial cables through laboratory tests. The grouted cable can easily deform together with the rock mass movements, and the deformed cable loses its original capacitance and the reflected waveform produced along the deformed cable consequently represents a change of voltage pulse. Therefore, it is possible to monitor the deformation of rock mass by measuring the changes in these reflection signatures. Shear test of the cemented mortar containing a specimen of coaxial cable showed that the shear deformation correlated linearly with the reflection coefficient, so the TDR was effective to monitor the displacement of the rock mass. Bending test were carried out in order to determine the influence of the crooked cables on the monitoring of rock mass movements. Controlled cirmping and shearing test upon a cable of 50 m long, 12.7 mm diameter showed not only the fact that the reflection amplitudes decreased as the cable length increased but also the proper crimping depth, width and interval between two adjacent crimps. Two coaxial cables-one 100 m long and other 175m long-were installed and grouted into the separate boreholes drilled in a sedimentary formation. The behavior of the cable was monitored with metallic TDR cable tester to measure rock mass deformation based on the interpretative techniques developed through laboratory tests.

  • PDF

Application of Curing Method Using the Heating Cable for Cold Weather Concreting (매입형 열선에 의한 한중콘크리트의 보양방법 적용에 관한 연구)

  • 김형래;이정철;김찬수;이명진;김봉주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.769-774
    • /
    • 2001
  • The purpose of this study is to analyze the curing effect of heating cable for concreting in cold weather. An experiment was conducted to evaluate the temperature history of concrete structures cured with embedded heating cables. Results are as follows : In comparison with the non-heating case, applying of heating cable resulted in the rise of temperature in the range of $10^{\circ}C$. In order to get successful results, the optimal pitch length for the embedded heating cables ranged from 20cm to 25cm. When working with the existing curing methods, applying this heating cable would be more effective in concrete curing. Finally, a formula and process was suggested to predict the Internal temperature history of concrete structures under the various curing conditions.

  • PDF

Space grid analysis method in modelling shear lag of cable-stayed bridge with corrugated steel webs

  • Ma, Ye;Ni, Ying-Sheng;Xu, Dong;Li, Jin-Kai
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.549-559
    • /
    • 2017
  • As few multi-tower single-box multi-cell cable-stayed bridges with corrugated steel webs have been built, analysis is mostly achieved by combining single-girder model, beam grillage model and solid model in support of the design. However, such analysis methods usually suffer from major limitations in terms of the engineering applications: single-girder model fails to account for spatial effect such as shear lag effect of the box girder and the relevant effective girder width and eccentric load coefficient; owing to the approximation in the principle equivalence, the plane grillage model cannot accurately capture shear stress distribution and local stress state in both top and bottom flange of composite box girder; and solid model is difficult to be practically combined with the overall calculation. The usual effective width method fails to provide a uniform and accurate "effective length" (and the codes fail to provide a unified design approach at those circumstance) considering different shear lag effects resulting from dead load, prestress and cable tension in the construction. Therefore, a novel spatial grid model has been developed to account for shear lag effect. The theoretical principle of the proposed spatial grid model has been elaborated along with the relevant illustrations of modeling parameters of composite box girder with corrugated steel webs. Then typical transverse and longitudinal shear lag coefficient distribution pattern at the side-span and mid-span key cross sections have been analyzed and summarized to provide reference for similar bridges. The effectiveness and accuracy of spatial grid analysis methods has been finally validated through a practical cable-stayed bridge.

An Improved Stability Design of Cable-Stayed Bridges using System Buckling and Second-Order Elastic Analysis (활하중의 영향을 고려한 시스템 좌굴해석 및 2차 탄성해석을 이용한 사장교의 개선된 좌굴설계)

  • Kyung, Yong Soo;Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.485-496
    • /
    • 2006
  • Practical stability design method of main members of cable-stayed bridges is proposed and discussed through a design example. For this purpose, initial tensions of stay cables and axial forces of main members are firstly determined using initial shaping analysis of bridges under dead loads. And then the effective buckling length using system elastic/inelastic buckling analysis and bending moments considering $P-{\delta}-{\Delta}$ effect by second-order elastic analysis are calculated for main girder and pylon members subjected to both axial forces and moments, respectively. Particularly, three load combinations of dead and live loads, in which maximum load effects due to live loads are obtained, are taken into account and effects of live loads on effective buckling lengths are investigated.