• Title/Summary/Keyword: effective humidity

Search Result 444, Processing Time 0.033 seconds

Effects of Relative humidity Conditions on the Compressive Strength Changes of Corrugating Mediums (상대습도조건에 따른 골심지의 압축강도 변화에 관한 연구)

  • 이준호;김수일;하영선
    • Food Science and Preservation
    • /
    • v.7 no.1
    • /
    • pp.63-67
    • /
    • 2000
  • Changes in the compressive strength of four typical corrugating mediums (K$_2$A, AS and S) as affected by relative humidity conditions were compared and their relative cost effectiveness was analysed. All mediums lost their compressive strength as relative humidity increased. at the relative humidity of 93% , As medium lost 58% of its initial strength while S medium did about 40%. Calculations of compress factor and compress factor by price indicated that $K_2$ medium was the most cost effective and maintained the highest compressive strength among the mediums tested. It was recommended that $K_2$ medium could be effectively used to make corrugated fiberboard especially for fresh agricultural product packaging .

  • PDF

Air - drying calendars of 24 districts in Korea (우리나라 지역별(地域別) 천연건조(天然乾燥)캘린더)

  • Jung, Hee-Suk;Park, Moon-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.16-22
    • /
    • 1986
  • Effective air-drying days for four seasons and districts were calculated from average monthly temperature, relative humidity and wind speed records for 24 districts in Korea and air-drying calendars were prepared. And these districts were divided into zones of effective air-drying days. These results were as follows. 1. Effective air-drying days for four seasons were 20 to 23 days in springtime, 30 days in summertime, 21 to 26 days in autumntime, and 8 to 17 days in wintertime. 2. Effective air-drying days variated from district to district and was 237 days, the shortest period, in Ch'unch$\breve{o}$n, and was 288 days, the longest period, in-S$\breve{o}$gwipo. 3. Effective air-drying days were primarilly related to the difference in temperature from month to month, and secondarily, especially in September, were related to the differences in relative humidity, and were not related to wind speed. 4. South Korea was divided into 4 zones of effective air-drying days and these zones had it little difference compared with meteorological zones.

  • PDF

A Study on Buffering Effect of Silicagel to Control Relative Humidity in Air-tight Case (밀폐장내(密閉欌內) 실리카겔의 습도조절(濕度調節) 효과(效果) 연구(硏究))

  • Kim, Myoung-nam;Yu, Hei-sun
    • Conservation Science in Museum
    • /
    • v.2
    • /
    • pp.77-82
    • /
    • 2000
  • The purpose of this study is to evaluate the effect of ART-SORB which is commonly used in museums and galleries at home and abroad including National Museum of Korea, so as to collect useful information to control micro-environment. Experiment was conducted in air-tight condition in order to evaluate only the effect of ART-SORB excluding any influence from outside factors. A certain amount of ART-SORB considering the case size and ART-SORB in cassette type were used to evaluate the humidity controlling capability. The result showed that target humidity was reached in 10~17 hours in case of using corresponding amount of ART-SORB to the cubic volume and in 5~6 hours in case of excessive use of cassette type ART-SORB. And it also showed that humidity can be controlled in the range of RH 50~70%. In addition, ART-SORB was excellent at raising humidity at low humidity and poor at high humidity. Therefore, ART-SORB turned out to be an effective humidity buffer for controlling micro-environment of such artifacts as wooden ware, lacquer ware and paintings, which require high humidity. However, unfortunately, there are some difficulties in applying this result to real condition, given the fact that this study was conducted under firm air-tight case. Therefore, ART-SORB can be fully effective only in firm air-tight case.

Analyzing Change of Discomfort Index for Transpiration of Street Tree (도시 가로수의 증산 작용으로 인한 불쾌지수 변화 분석)

  • Yun, Seok-Hwan;Lee, Dong-Kun;Park, Chae-Yeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.5
    • /
    • pp.29-43
    • /
    • 2020
  • Thermal environment of city is getting worse due to severe urban heat island caused by climate change and urbanization. The cooling effect of street tree is regarded as a effective way to ameliorate the urban heat environment. The effect is largely made up of shadow formation and transpiration. This study aims to identify how the transpiration affects the discomfort index by analyzing comprehensive impact of the transpiration on the air temperature and relative humidity. The changes in the amount of transpiration, air temperature, and relative humidity were estimated for Seogyo-dong area which has a lot of floating population in Seoul, at 2 p.m. in dry day in July and August. On average, the transpiration of the street tree decreased the temperature 0.3℃ and increased the relative humidity 2.6% in an hour. As a result of these changes in temperature and humidity, the discomfort index rose mostly(0.036 on average). It was always get rise especially on the day when the discomfort index was above 80(0.05 on average). However, compared with the significant change in temperature and humidity, the variation of the discomfort index itself was very slight(up to 0.107). Therefore, the effect of transpiration by the street trees might not be effective in the planning to improve the thermal environment(especially on the day when the discomfort index is high). It is necessary to select the species of trees and planting location considering the cooling effect of shade formation synthetically.

A study on the optimal conditions for latent fingerprint development using cyanoacrylate fuming method in vacuum chamber (시아노아크릴레이트 진공 훈증법에 의한 잠재지문 현출 최적화에 관한 연구)

  • Yu, Je-Seol;Jung, Jin-Sung;Lim, Seung;Park, Sung-Woo
    • Analytical Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.164-170
    • /
    • 2012
  • Cyanoacrylate fuming mehod is effective for latent fingerprints developing on non-porous surfaces. In this study, we investigated optimal conditions for latent fingerprint development using cyanoacrylate fuming method in vacuum chamber. The effects of temperature, relative humidity, fuming method and processing time were checked throughly. The amount of evaporated cyanoacrylate was increased at higher temperature, but cyanoacrylate polymerization on the fingerprint ridge was best at $30^{\circ}C$. With a relative humidity of 40% to 50% conditions, good quality of fingerprints were developed. If a relative humidity is lower than 30% or higher than 60%, polymerization rate of cyanoacrylate monomers on the fingerprint ridge was decreased. It was identified that application of $OMEGA-PRINT^{TM}$ dispersal pad or cotton ball with sodium hydroxide fuming method in vacuum chamber was more effective than natural fuming method. We found that cyanoacrylate processing time in vacuum chamber did not have more significant than relative humidity.

An experimental study of frost forming on the horizontal cylinder under cross flow (직교유동 내에 놓인 수평 실린더에서 서리 생성에 관한 실험적 연구)

  • 이윤빈;노승탁
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.448-456
    • /
    • 1999
  • Variations of thickness and effective thermal conductivity of frost forming on the horizontal] cylinder with respect to time were measured under cross flow. The local heat flux around the cylinder was determined by measuring the radial temperature distribution in the cylinder having small holes drilled axially in which T-type thermocouples were inserted, then by using one dimensional cylindrical heat conduction equation. The thickness and the surface temperature of the frost layer around the cylinder were measured periodically while developing the frost. Each experiment was peformed by varying the Reynolds number, the temperature, and the humidity condition. Specially the dew point temperature of the most cases was below the freezing point. Experimental data showed that the frost layers on the front and the rear surface were thicker than those on the top and the bottom one which was near the separation point. The thickness and effective thermal conductivity of the frost layer were affected by inlet air velocity, temperature, and humidity. Moreover, the effective thermal conductivity and the effective thermal resistance increase with respect to time.

  • PDF

Characterization of Indoor Temperature and Humidity in Low-income Residences over a Year in Seoul, Korea

  • Lee, Daeyeop;Lee, Kiyoung;Bae, Hyunjoo
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.184-193
    • /
    • 2017
  • People spend the majority of their time in indoor environments. Maintaining adequate indoor temperature and humidity is necessary to support health and improve quality of life. However, people with low incomes can be vulnerable because they may not be able to use effective cooling and heating systems in their homes. In this study, the indoor temperature and humidity in low-income residences over a year in Seoul, Korea was characterized. Indoor temperature and humidity were measured in three types of homes (12 rooftop residences, 16 basement residences, and 18 public rental apartments) occupied by low-income residents. Both differed significantly among the three types of residence, particularly during the summer and winter seasons. A regression model between indoor and outdoor temperature detected a heating threshold at $3.9^{\circ}C$ for rooftop residences, $9.9^{\circ}C$ for basement residences, and $17.1^{\circ}C$ for public rental apartments. During tropical nights and cold-wave advisory days, rooftop residences showed the most extreme indoor temperatures. This study demonstrates that people living in rooftop residences could be at risk from extreme hot and cold conditions.

Excellent toluene removal via adsorption by honeycomb adsorbents under high temperature and humidity conditions

  • Cho, Min-Whee;Kim, Jongjin;Jeong, Jeong Min;Yim, Bongbeen;Lee, Hyun-Jae;Yoo, Yoonjong
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.171-177
    • /
    • 2020
  • Removal through adsorption is the most widely used and effective treatment method for volatile organic compounds (VOCs) in exhaust gases. However, at high temperatures and humidity, adsorption is competitive due to the presence of moisture and unsmooth physical adsorption thereby deteriorating adsorption performance. Therefore, water adsorption honeycomb (WAH) and VOCs adsorption honeycomb (VAH) were prepared to improve VOCs adsorption at high temperatures and humidity. Adsorbed toluene amounts on single honeycomb (SH), containing only VAH, and combined honeycomb (CH), containing WAH and VAH, were determined. Further, the toluene adsorption rates of honeycomb adsorbents mounted on rotary systems, VAH-single rotor (SR) and WAH/VAH-dual rotor (DR) were determined. Toluene adsorption by WAH/VAH-CH (inlet temperature: 40-50℃; absolute humidity: 28-83 gH2O/kg-dry air) was 1.6 times that by VAH-SH, and the water adsorption efficiency of WAH/VAH-CH was 1.7 times that of VAH-SH. The adsorption/removal efficiency of the WAH/VAH-DR (inlet temperature: 45℃; absolute humidity: 37.5 gH2O/kg-dry air) was 3% higher than that of VAH-SR. This indicates that the WAH at the rotor inlet selectively removed water, thereby improving the adsorption efficiency of the VAH at the outlet.

Compressive Strength Reduction Characteristics of Linerboard as Influenced by Temperature and Humidity (온도 및 습도 변화에 따른 라이너원지의 압축강도 열화에 관한 연구)

  • 이준호;김수일;하영선
    • Food Science and Preservation
    • /
    • v.6 no.3
    • /
    • pp.303-307
    • /
    • 1999
  • Compressive strength reduction characteristics of 4 different linerboards(SC, KA, SK and IK) as influenced by temperature and humidity were investigated by ring crush test. No significant effect of temperature on the reduction of compressive strength was found for samples prepared at 5$^{\circ}C$ and 30$^{\circ}C$. At the relative humidity of 66 percents, IK linerboard showed the lowest reduction of the compressive strength. At the relative humidity of 93 percents, KA linerboard lost 40 percents of its initial compressive strength while SK linerboard lost its strength up to 56 percents. The result indicated that KA linerboard was the most cost effective and material with the highest compressive strength among tested linerboards.

  • PDF

A Study on the Indoor Air Quality in the bedroom with respect to Temperature and Humidity conditions (온도 및 습도 조건에 따른 침실 공기환경에 관한 연구)

  • Kim, Dong-Gyu;Kim, Se-Hwan
    • KIEAE Journal
    • /
    • v.11 no.3
    • /
    • pp.31-36
    • /
    • 2011
  • People spend most of their time inside buildings recently, so the indoor air quality is one of the most important factors to human health. Furthermore, minimum energy use with proper ventilation systems for pleasant indoor environment is necessary because of energy shortage over the world. The concern to maintain proper indoor air quality at home has been increased, and a proper indoor air quality is continuously requested by the residents. By measuring and analyzing the density fluctuation of $CO_2$ through indoor humidity and testing personal reactions regarding comfort condition, we can obtain a way to effective ventilation. Heat and carbon dioxide emissions from resident's metabolism and construction materials could be the causes of indoor air pollution. If these materials stay indoors for a long time, it could directly influence the resident's health condition with diseases. It also leads massive energy use. Therefore, the way to save energy and to have effective control of indoor ventilation is needed. This study presented the control method of bedroom ventilation by $CO_2$ concentration change and subjective evaluation.