• Title/Summary/Keyword: effective frequency shift

Search Result 59, Processing Time 0.023 seconds

Sensorless Control of Brushless DC Motors Using a Frequency-Independent Phase Shifter (주파수불변 위상지연기를 사용한 BLDCM의 센서리스제어)

  • Jeong, Du-Hui;Ha, In-Jung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.2
    • /
    • pp.85-95
    • /
    • 2000
  • This paper describes a sensorless control scheme for brushless dc motors(BLDCMs) using a phase shifter(FIPS) which can shift the zero-crossing point of the input signal with a specified amount of phase. The detection performance of the proposed FIPS is independent of the frequency of the input signal and quite robust with respect to the measurement noise. It is shown that the proposed sensorless control scheme using the FIPS is more effective in the respects of noise-robustness and cost than the previously known schemes. The generality and practicality of the proposed sensorless control scheme is demonstrated through performance analysis and experiments under various operating conditions.

  • PDF

Design of MAGLEV Information Transmission System by Radio Inductive Loop (유도무선루프에 의한 자기부상열차 정보전송 시스템의 설계)

  • An, Sang-Gwon;Park, Seok-Ha;Park, Jeong-Su;Kim, Jong-Beom;Kim, Yang-Mo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.1
    • /
    • pp.42-47
    • /
    • 1999
  • This paper presents the information transmission between on-board and ground-site in MAGLEV. considering safety and high speed operation and density operation, information transmission between them is necessary. Therefore it is necessary for transmission system to ensure high speed transmission, low error rate, massive information, and reliability of information. To provide above conditions, 1.1km signal line assembly was constructed and Frequency Shift Keying(FSK) modulation and Open System Interconnection(OSI) based high-level data link control(HDLC) protocol are applied. To modulate digital signal for transmission from ground-site to on-board, carrier frequency of 70kHz is used and 90khz is used for transmission from on-board to ground-site. Transmission speed is 2400bps for consideration of train speed, quantity of information, and data error rate. And this paper introduces information monitoring considering user interface and presents the method for an effective data transmission in MAGLEV which is now being tested and intends to provide for an intelligent train operation system in future.

  • PDF

Adaptive-length pendulum smart tuned mass damper using shape-memory-alloy wire for tuning period in real time

  • Pasala, Dharma Theja Reddy;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.203-217
    • /
    • 2014
  • Due to the shift in paradigm from passive control to adaptive control, smart tuned mass dampers (STMDs) have received considerable attention for vibration control in tall buildings and bridges. STMDs are superior to tuned mass dampers (TMDs) in reducing the response of the primary structure. Unlike TMDs, STMDs are capable of accommodating the changes in primary structure properties, due to damage or deterioration, by tuning in real time based on a local feedback. In this paper, a novel adaptive-length pendulum (ALP) damper is developed and experimentally verified. Length of the pendulum is adjusted in real time using a shape memory alloy (SMA) wire actuator. This can be achieved in two ways i) by changing the amount of current in the SMA wire actuator or ii) by changing the effective length of current carrying SMA wire. Using an instantaneous frequency tracking algorithm, the dominant frequency of the structure can be tracked from a local feedback signal, then the length of pendulum is adjusted to match the dominant frequency. Effectiveness of the proposed ALP-STMD mechanism, combined with the STFT frequency tracking control algorithm, is verified experimentally on a prototype two-storey shear frame. It has been observed through experimental studies that the ALP-STMD absorbs most of the input energy associated in the vicinity of tuned frequency of the pendulum damper. The reduction of storey displacements up to 80 % when subjected to forced excitation (harmonic and chirp-signal) and a faster decay rate during free vibration is observed in the experiments.

A Development of Satellite Communication Link Analysis Tool

  • Ayana, Selewondim Eshetu;Lim, SeongMin;Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.117-129
    • /
    • 2020
  • In a Satellite communication system, a link budget analysis is the detailed investigation of signal gains and losses moving through a channel from a sender to receiver. It inspects the fading of passed on data signal waves due to the process of spreading or propagation, including transmitter and receiver antenna gains, feeder cables, and related losses. The extent of the proposed tool is to make an effective, efficient, and user-friendly approach to calculate link budget analysis. It is also related to the satellite communication correlation framework by building up a graphical interface link analysis tool utilizing STK® software with the interface of C# programming. It provides better kinds of graphical display techniques, exporting and importing data files, printing link information, access data, azimuth-elevation-range (AER), and simulation is also possible at once. The components of the link budget analysis tool include transmitter gain, effective isotropic radiated power (EIRP), free space loss, propagation loss, frequency Doppler shift, flux density, link margin, elevation plot, etc. This tool can be useful for amateur users (e.g., CubeSat developers in the universities) or nanosat developers who may not know about the RF communication system of the satellite and the orbital mechanics (e.g., orbit propagators) principle used in the satellite link analysis.

A High Power Micropump Using Active Check Valves Driven by Piezoelectric Actuators (압전구동 능동형 체크밸브를 이용한 고출력 마이크로펌프)

  • Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.39-47
    • /
    • 2005
  • In this paper, a novel high power micropump using active check valves in place of conventional passive check valves employed at the inlet and outlet ports is presented. It actively controls open/close motion of check valves using piezoelectric actuator for expansion/contraction of pump chamber. A prototype micropump having an effective size of $17mm{\times}8mm{\times}11mm$ is fabricated. Frequency-dependent flow rate characteristics, bi-directional flow characteristics and load characteristics are experimentally investigated using a timing control method for valve closing motion. From the obtained experimental results, it is ascertained that optimal values of the phase shift compared to the voltage to drive pump chamber are $15^{\circ}$ for inlet check valve and $195^{\circ}$ for outlet. Based on the obtained results, a sheet-type active shuttle valve that has a unified valve-body for inlet and outlet check valves is proposed. A micropump with an effective size of $10mm{\times}10mm{\times}10mm$ is fabricated and the basic characteristics are experimentally investigated.

  • PDF

Design and Optimization of Suspension with Optical Flying Head Using Integrated Optimization Frame (통합최적프레임을 사용한 광부상헤드를 탑재한 서스팬션의 최적화)

  • Kim, Ji-Won;Park, Kyoung-Su;Yoon, Sang-Joon;Choi, Dong-Hoon;Park, Young-Pil;Lee, Jong-Soo;Park, No-Cheol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.161-168
    • /
    • 2005
  • This paper optimizes the optical flying head(OFH) suspension using the integrated optimization frame, which automatically integrates the analysis with the optimization and effectively implements the repetitive works between them. The problem formulation for the optimization is suggested to improve the dynamic compliance of OFH and to shift the resonant frequencies caused tracking errors to high frequency domain. Furthermore, the minimization of the effective suspension mass that leads to decrease the so-called 'lift-off' as the disk-head separation acceleration divided by the suspension load is taken into consideration. In particular, this study is carried out the optimal design considering the process of modes tracking through the entire optimization processes. The advanced suspension that reduces the effective mass of the suspension and increases the resonant frequencies of sway and $2^{nd}$ torsion over 10kHz is achieved by using the integrated optimization frame.

  • PDF

Quantitative Assessment of the Fastening Condition and the Crack Size with Using Piezoceramic(PZT) Sensors (압전소자를 이용한 볼트토크 및 크랙의 정량적평가에 관한 연구)

  • Hong, Dong-Pyo;Hong, Yong;Wang, Gao-Ping;Han, Byeong-Hee;Kim, Young-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.603-606
    • /
    • 2006
  • We present a study on the development of a practical and quantitative technique for the assessment of the structural health condition with using piezoceramic(PZT) sensors. The electro-impedance-based technique with the PZT patches is very sensitive for evaluation of the incipient and small damage in a high frequency range, and however the commonly traditional modal analysis method is effective only for considerably larger damages in low frequency range. The paper presents the technique in detecting and characterizing real-time damage on the specimen that is an aluminum plate fastened with bolts and nuts by different torques and as well a plate with a crack. By using the special arrangement of the PZT sensors, the required longitudinal wave is generated through the specimen. A large number of experiments are conducted and the different conditions of the specimens, i.e. the location and extent of loosening bolts, and the plate with a crack are simulated. respectively. Since fixing and loosening the loosened bolt is controlled by a torque wrench, we can control exactly the experiment of the different torques. Compared with the simulated healthy condition, we can find whether or not there is a damage in the specimen with using an impedance analyzer with the PZT sensors. Several indices are discussed and used for assessing the different simulated damages. As for the location of bolt loosening, the RMSD is found to be the most appropriate index for numerical assessment and as well the RMSD shows strongly linear relationship for assessing the extent of the bolt loosening, and the frequency peak shift ${\Delta}F$ is used to assess the cracked plate. The possibility of repeatability of the pristine condition signatures is also presented and the appropriate frequency range and interval are uniquely selected through large numbers of experiments.

  • PDF

Delay and Doppler Profiler based Channel Transfer Function Estimation for 2×2 MIMO Receivers in 5G System Targeting a 500km/h Linear Motor Car

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.8-16
    • /
    • 2023
  • In Japan, high-speed ground transportation service using linear motors at speeds of 500 km/h is scheduled to begin in 2027. To accommodate 5G services in trains, a subcarrier spacing frequency of 30 kHz will be used instead of the typical 15 kHz subcarrier spacing to mitigate Doppler effects in such high-speed transport. Furthermore, to increase the cell size of the 5G mobile system, multiple base station antennas will transmit identical downlink (DL) signals to form an expanded cell size along the train rails. In this situation, the forward and backward antenna signals are Doppler-shifted in opposite directions, respectively, so the receiver in the train may suffer from estimating the exact Channel Transfer Function (CTF) for demodulation. In a previously published paper, we proposed a channel estimator based on Delay and Doppler Profiler (DDP) in a 5G SISO (Single Input Single Output) environment and successfully implemented it in a signal processing simulation system. In this paper, we extend it to 2×2 MIMO (Multiple Input Multiple Output) with spatial multiplexing environment and confirm that the delay and DDP based channel estimator is also effective in 2×2 MIMO environment. Its simulation performance is compared with that of a conventional time-domain linear interpolation estimator. The simulation results show that in a 2×2 MIMO environment, the conventional channel estimator can barely achieve QPSK modulation at speeds below 100 km/h and has poor CNR performance versus SISO. The performance degradation of CNR against DDP SISO is only 6dB to 7dB. And even under severe channel conditions such as 500km/h and 8-path inverse Doppler shift environment, the error rate can be reduced by combining the error with LDPC to reduce the error rate and improve the performance in 2×2 MIMO. QPSK modulation scheme in 2×2 MIMO can be used under severe channel conditions such as 500 km/h and 8-path inverse Doppler shift environment.

A 12 mW ADPLL Based G/FSK Transmitter for Smart Utility Network in 0.18 ㎛ CMOS

  • Park, Hyung-Gu;Kim, Hongjin;Lee, Dong-Soo;Yu, Chang-Zhi;Ku, Hyunchul;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.272-281
    • /
    • 2013
  • This paper presents low power frequency shift keying (FSK) transmitter using all digital PLL (ADPLL) for smart utility network (SUN). In order to operate at low-power and to integrate a small die area, the ADPLL is adopted in transmitter. The phase noise of the ADPLL is improved by using a fine resolution time to digital converter (TDC) and digitally controlled oscillator (DCO). The FSK transmitter is implemented in $0.18{\mu}m$ 1-poly 6-metal CMOS technology. The die area of the transmitter including ADPLL is $3.5mm^2$. The power consumption of the ADPLL is 12.43 mW. And, the power consumptions of the transmitter are 35.36 mW and 65.57 mW when the output power levels are -1.6 dBm and +12 dBm, respectively. Both of them are supplied by 1.8 V voltage source. The frequency resolution of the TDC is 2.7 ps. The effective DCO frequency resolution with the differential MOS varactor and sigma-delta modulator is 2.5 Hz. The phase noise of the ADPLL output at 1.8 GHz is -121.17 dBc/Hz with a 1 MHz offset.

Application of EMG Analysis for Department Store Female Workers (일부 서비스업 종사 여성근로자의 근육피로에 대한 EMG 분석)

  • Kwon, Young Guk;Kim, Soon Lae;Ji, Ju Ok
    • Korean Journal of Occupational Health Nursing
    • /
    • v.8 no.2
    • /
    • pp.156-161
    • /
    • 1999
  • The EMG(Electromyography) analysis was used to identify the fact the degree of inclined step was selected as dependent variable and feet muscle fatigue was selected as a independent variable. In a final result from EMG test. the shift in median frequency (MF) with 20, 25, 30, 35 degree of inclined steps indicated that 30 degree step was identified as most effective for a decrease in feet muscle fatigue. In a department store, 80% of the workers are female standing sales workers. They work at standing on average 10 hours per day. They performed heavy duty jobs such as lifting, lowering. packing and carrying heavy materials. Furthermore, even though they have work shoes, they usually use various kind of high heels. Eventually, this situation develops low-back-pain (LBP) problems for female workers. In conclusion, it is recommended that a particular branch in a department store claimed this step can effectively to circulate blood and significantly decrease feet muscle fatigue in lower extremity.

  • PDF