• Title/Summary/Keyword: effective anchorage length

Search Result 23, Processing Time 0.029 seconds

A Study on In-Situ Slope Reinforcement Methods Using Nailed Geotextiles (네일 및 지오텍스타일을 이용한 원위치 사면보강공법에 관한 연구)

  • 김홍택
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.133-152
    • /
    • 1994
  • In the present study, an economic design of Anchored Geosynthetic(AG) System applied mainly to reinforce unstable soil slopes is investigated. For this purpose methods of stability analysis are developed to determine the optimum installation angle, required minimum length and maximum spacing of nails. Anchorage of nails within the soil mass is achieved by frictional resistance to pull out along the effective length of the nails. Cases of infinite slope and finite slope are dealt with individually. Silce methods of stability analysis developed in the present study are limit-equilibrium-based. For the case of finite slope Spencer method which considers interslice force is modified to evalyate the overall stability. In addition, the effects of various design parameters on requried length and spacing of nails corresponding to the optimum orientation of nails are analyzed. Based on the analysis, a simplified equation is given for the optimum nail orientation. Also the importance of optimum nail orientation is illustrated throughout design example, and the appropriateness of judgment criterion are examined.

  • PDF

Evaluation on the Shear Performance of U-type Precast Prestressed Beams (U형 PSC보외 전단거동 평가)

  • Yu Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.10-17
    • /
    • 2004
  • Shear tests were performed on four ends of full scale U-type beams which were designed by optimum process for the depth with a live load of 4903Pa. The ratio of width to depth of full scale 10.5 m-span, composite U-type beams with topping concrete was greater than 2. Following conclusions were obtained from the evaluation on the shear performance of these precast prestressed beams. 1) Those composite U-type beams performed homogeneously up to the failure load, and conformed to ACI Strength design methods in shear and flexural behaviors. 2) The anchorage requirements on development length of strand In the ACI Provisions preyed to be a standard to determine a failure pattern within the limited test results of the shallow U-type beams. 3) Those all shear crackings developed from the end of the beams did not lead to anchorage failure. However, initiated strand slip may leads the bond failure by increasing the size of diagonal shear crackings. 4) The flexural mild reinforcement around the vertical center of beam section was effective for developments of a ductile failure.

Flexural Test for a Monolithic Holed Web Prestressed Concrete (HWPC) Girder

  • Han, Man-Yop;Jin, Kyung-Suk;Choi, Sok-Hwan
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.2
    • /
    • pp.77-87
    • /
    • 2010
  • Prestressed concrete (PSC) I-type girders have been used for span length around up to 40 m in domestic region. PSC girders are very cost effective girder type and extending their lengths more than 50 m will bring large benefit in cost. A new design method was proposed by combining two notable design concept in order to extend the applicable span length in this study. First of all, several numbers of openings was introduced in the girder web, and half of the anchorage devices were moved into the openings. In this way, large compressive stress developed at end zone was reduced, and the portion of design load coming from self-weight was reduced as well. Secondly, prestressing force was introduced in the girder not once at the initial stage, but through multiple loading stages. A full scale girder with the length of 50 m with the girder depth of 2 m was fabricated, and a flexural test was conducted in order to verify the performance of newly developed girder. Test results showed that the new holed web design concept can provide a way to design girders longer than 50 meters with the girder height of 2 m.

The Effect of Anchorage with Shear Reinforcement in Flat Plate System (플랫 플레이트 구조에서 전단보강체의 정착성능에 따른 전단보강효과)

  • Choi, Chang-Sik;Bae, Baek-Il;Choi, Yun-Cheul;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.667-675
    • /
    • 2012
  • Flat plate are being used more in buildings requiring a high level of technical installations or in buildings needing changeable room arrangements during their life time such as office buildings. The main problem in flat plate is its weak resistance against a punching failure at its slab-column connections. Therefore, in this research, an experimental study on full-scale interior slab-column connection was performed. Three types of shear reinforcements were tested to prevent brittle punching shear failure that could lead to collapse of the structure. A series of four flat plate specimens including a specimen without shear reinforcement and three specimens with shear reinforcements were tested. The slabs were tested up to failure using monotonic vertical shear loading. The presences of the shear reinforcements substantially increased punching shear capacity and ductility of the interior slabcolumn connections. The test results showed that a slab that did not have enough bond length failed before shear reinforcement yielded due to anchorage slip. Also, FEM analyses were performed to study an effect of slab thickness and concrete compressive strength on the flat plate slab. The analytical study results were used to propose a method to calculate performance capacity of shear reinforcement in slab-column connection.

Assessment of Bond-Slip Interface Model with Concrete and CFRP Plates (콘크리트와 탐소섬유판 계면의 본드-슬립모델 산정)

  • Yang Dong suk;Koh Byung Soon;Park Sun Kyu;You Young Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.635-638
    • /
    • 2004
  • External bonding of steel plates has been used to strengthen deficient reinforced-concrete structures since the 1960s. In recent years, fiber-reinforcde polymer(FRP) plates have been increasingly used to replace steel plates due to their superior properties. This paper is concerned with anchorage failure due to crack propagation parallel to the boned plated near or along the adhesive/concrete interface, staring from the critically stressed position toward the anchored end of the plates. Factor of bond-slip interface model is average bond stress, effective length, slip volume and fracture energy. The aim of the present paper is to provide a comprehensive assessment of bond-slip interface model with concrete and CFRP plates.

  • PDF

An analytical analysis of the pullout behaviour of reinforcements of MSE structures

  • Ren, Feifan;Wang, Guan;Ye, Bin
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.233-240
    • /
    • 2018
  • Pullout tests are usually employed to determine the ultimate bearing capacity of reinforced soil, and the load-displacement curve can be obtained easily. This paper presents an analytical solution for predicting the full-range mechanical behavior of a buried planar reinforcement subjected to pullout based on a bi-linear bond-slip model. The full-range behavior consists of three consecutive stages: elastic stage, elastic-plastic stage and debonding stage. For each stage, closed-form solutions for the load-displacement relationship, the interfacial slip distribution, the interfacial shear stress distribution and the axial stress distribution along the planar reinforcement were derived. The ultimate load and the effective bond length were also obtained. Then the analytical model was calibrated and validated against three pullout experimental tests. The predicted load-displacement curves as well as the internal displacement distribution are in closed agreement with test results. Moreover, a parametric study on the effect of anchorage length, reinforcement axial stiffness, interfacial shear stiffness and interfacial shear strength is also presented, providing insights into the pullout behaviour of planar reinforcements of MSE structures.

Strut-tie model evaluation of behavior and strength of pre-tensioned concrete deep beams

  • Yun, Young Mook
    • Computers and Concrete
    • /
    • v.2 no.4
    • /
    • pp.267-291
    • /
    • 2005
  • To date, many studies have been conducted for the analysis and design of reinforced concrete members with disturbed regions. However, prestressed concrete deep beams have not been the subject of many investigations. This paper presents an evaluation of the behavior and strength of three pre-tensioned concrete deep beams failed by shear and bond slip of prestressing strands using a nonlinear strut-tie model approach. In this approach, effective prestressing forces represented by equivalent external loads are gradually introduced along strand's transfer length in the nearest strut-tie model joints, the friction at the interface of main diagonal shear cracks is modeled by the aggregate interlock struts along the direction of the cracks in strut-tie model, and an algorithm considering the effect of bond slip of prestressing strands in the strut-tie model analysis and design of pre-tensioned concrete members is implemented. Through the strut-tie model analysis of pre-tensioned concrete deep beams, the nonlinear strut-tie model approach proved to present effective solutions for predicting the essential aspects of the behavior and strength of pre-tensioned concrete deep beams. The nonlinear strut-tie model approach is capable of predicting the strength and failure modes of pre-tensioned concrete deep beams including the anchorage failure of prestressing strands and, accordingly, can be employed in the practical and precise design of pre-tensioned concrete deep beams.

A Study on Tension for Cables of a Cable-stayed Bridge Damper is Attached (댐퍼가 부착된 사장교의 케이블 장력에 관한연구)

  • Park, Yeon Soo;Choi, Sun Min;Yang, Won Yeol;Hong, Hye Jin;Kim, Woon Hyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.609-616
    • /
    • 2008
  • Recently, many ocean bridges that connect land to island or island to island have been constructed along with the improvement of the nation's economy. Long-span bridges can be categorized as suspension bridge, cable-stayed bridge, arch bridge and truss bridge. In this study, correction with respect to construction error can be presented on site through the monitoring of the cable tension change of real structure for four major construction stages so that construction accuracy, including the management of profiles, can be improved. A vibration method, the so-called indirect method that uses the cable's natural frequency changes from the acceleration sensor installed on the cable, is applied in measuring cable tension. In this study, the estimation formula for the effective length of cable with damper is presented by comparing and analyzing between actual measurement and analysis result for the change of the cable's effective length. By the way, it is known that the reliability of estimating cable tension by applying the former method that uses the net distance from damper to anchorage is low. Therefore, for future reference of the maintenance stage, the presented formula for estimating the effective length of cable can be used as a reference for the rational decision-making, such as the re-tensioning and replacement of cable.

Prediction of load transfer depth for cost-effective design of ground anchors using FBG sensors embedded tendon and numerical analysis

  • Do, Tan Manh;Kim, Young-Sang
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.737-755
    • /
    • 2016
  • The load transfer depth of a ground anchor is the minimum length required to transfer the initial prestressing to the grout column through the bonded part. A thorough understanding of the mechanism of load transfer as well as accurate prediction of the load transfer depth are essential for designing an anchorage that has an adequate factor of safety and satisfies implicit economic criteria. In the current research, experimental and numerical studies were conducted to investigate the load transfer mechanism of ground anchors based on a series of laboratory and field load tests. Optical FBG sensors embedded in the central king cable of a seven-wire strand were successfully employed to monitor the changes in tensile force and its distribution along the tendons. Moreover, results from laboratory and in-situ pullout tests were compared with those from equivalent case studies simulated using the finite difference method in the FLAC 3D program. All the results obtained from the two proposed methods were remarkably consistent with respect to the load increments. They were similar not only in trend but also in magnitude and showed more consistency at higher pullout loading stages, especially the final loading stage. Furthermore, the estimated load transfer depth demonstrated a pronounced dependency on the surrounding ground condition, being shorter in hard ground conditions and longer in weaker ones. Finally, considering the safety factor and cost-effective design, the required bonded length of a ground anchor was formulated in terms of the load transfer depth.

Anchorage mechanism and pullout resistance of rock bolt in water-bearing rocks

  • Kim, Ho-Jong;Kim, Kang-Hyun;Kim, Hong-Moon;Shin, Jong-Ho
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.841-849
    • /
    • 2018
  • The purpose of a rock bolt is to improve the mechanical performance of a jointed-rock mass. The performance of a rock bolt is generally evaluated by conducting a field pullout test, as the analytical or numerical evaluation of the rock bolt behavior still remains difficult. In this study, wide range of field test was performed to investigate the pullout resistance of rock bolts considering influencing factors such as the rock type, water bearing conditions, rock bolt type and length. The test results showed that the fully grouted rock bolt (FGR) in water-bearing rocks can be inadequate to provide the required pullout resistance, meanwhile the inflated steel tube rock bolt (ISR) satisfied required pullout resistance, even immediately after installation in water-bearing conditions. The ISR was particularly effective when the water inflow into a drill hole is greater than 1.0 l/min. The effect of the rock bolt failure on the tunnel stability was investigated through numerical analysis. The results show that the contribution of the rock bolt to the overall stability of the tunnel was not significant. However, it is found that the rock bolt can effectively reinforce the jointed-rock mass and reduce the possibility of local collapses of rocks, thus the importance of the rock bolt should not be overlooked, regardless of the overall stability.