• Title/Summary/Keyword: effect of bearing capacity

Search Result 571, Processing Time 0.03 seconds

The Effect of Base Projecting Walls on the Bearing Capacity and Settlement of Shallow Foundations on Soft Ground (저면돌출벽을 이용한 연약지반상 얕은기초의 지내력 증대 효과)

  • Lim, Jongseok;Park, Seunghoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1523-1528
    • /
    • 2013
  • It is necessary to develop the simple and efficient technique that ease entry of man and equipment and take the role of foundations of temporary or small structures on the soft ground. This study intends to verify the effects on the increase of bearing capacity of base projecting walls under shallow foundations and to investigate the variance of the bearing capacity of the foundations according to the interval and length of the walls. For this, model soft ground in the chamber equipped with loading apparatus is made and the loading tests on the model foundations with base projecting walls of various intervals and lengths using the apparatus are performed with measuring the loads and settlements. The results show that the base projecting walls under shallow foundations on soft ground are effective on the increase of bearing capacity and the more the number and length of the walls the larger the effects. And, when the ratio of interval to length of the walls is 1, i.e. the shape forming the base of the foundation and the walls is square, the bearing capacity is increased by 25% and the effect is optimum.

Experimental Study on Bearing Capacity of Ground Treated by Sand Compaction Piles (모래다짐말뚝(SCP) 시공지반의 지지력에 관한 실험적 연구)

  • 김병일;김영욱;이상익;최용성
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.39-47
    • /
    • 2004
  • The SCP(sand compaction pile) method which is a vertical reinforcing technique for soft ground using a sand compaction pile has received increasing popularity in Korea. Currently, there are different methods to evaluate the bearing capacity of the reinforced ground by the SCP method. However, a method that can consider the effect of the replacement ratio on the bearing capacity is not yet available. This study investigated the effect of the replacement ratio on the bearing capacity of the reinforced ground by the SCP method. The study involved laboratory experiments which were conducted on a centrifuge facility. Test conditions included various ranges of replacement ratios (20, 30, and 40%), centrifuged consolidation, and loading. From the results of the study, a method which can evaluate the bearing capacity of the reinforced ground was proposed and verified using the weighted average of the replacement ratio.

Effects of Pile Diameter on the Plugging Rate and Bearing Capacity of Open -Ended Piles (말뚝직경이 재단말뚝의 폐색정도와 지지력에 미치는 영향)

  • Baek, Gyu-Ho;Kim, Yeong-Sang;Lee, Seung-Rae
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.85-94
    • /
    • 1996
  • Model pile tests, using a calibration chamber in which the stress state and the relative density can be controlled, were performed in order to study the effects of pile diameter on the plugging rate and bearing capacity of open-ended pile. The model piles used in the test series were devised so that the bearing capacity of an open-ended pile could be measured out into three components. The test results showed that fully plugging depth of an open -ended pile increased with increase in pile diameter and soil density. Moreover, it was found that unit plug capacity decreased with increase in pile diameter, though the penetration ratio or plugging rate of piles was constant. However, the existing formulae for estimation of plug capacity give plug capacity which is constant or increased with increase in pile diameter, when penetration ratio or plugging rate of piles is equal. Thus, it is proposed that the effect of pile diameter as well as plugging rate on bearing capacity of pile must be considered in plug capacity estimation.

  • PDF

The Evaluation of the Allowable Bearing Capacity of Foundations using N-Value (N-Value를 이용한 기초의 지지력 산정)

  • 이강운;박택규;정해운
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.281-292
    • /
    • 2001
  • The evaluation of the allowable bearing capacity is the most important step in the design of a foundation. An accurate evaluation of the effect of all factors such as the physical properties of the soil located beneath the area, the size of the area, the depth of foundation, and the position of the water table is impracticable Therefore, the designer is compelled to estimate the allowable bearing capacity on the basis of simple semiempirical rules under cohesionless soils. This paper deals with semiemperical rules for determining allowable bearing capacity based on observed relations between the results of standard penetration test. Additional comparisions between the results of the theoretical methods and the emperical rules are performed to suggest more conservative design for the engineer.

  • PDF

Experimental and numeral investigation on self-compacting concrete column with CFRP-PVC spiral reinforcement

  • Chen, Zongping;Xu, Ruitian
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.39-51
    • /
    • 2022
  • The axial compression behavior of nine self-compacting concrete columns confined with CFRP-PVC spirals was studied. Three parameters of spiral reinforcement spacing, spiral reinforcement diameter and height diameter ratio were studied. The test results show that the CFRP strip and PVC tube are destroyed first, and the spiral reinforcement and longitudinal reinforcement yield. The results show that with the increase of spiral reinforcement spacing, the peak bearing capacity decreases, but the ductility increases; with the increase of spiral reinforcement diameter, the peak bearing capacity increases, but has little effect on ductility, and the specimen with the ratio of height to diameter of 7.5 has the best mechanical properties. According to the reasonable constitutive relation of material, the finite element model of axial compression is established. Based on the verified finite element model, the stress mechanism is revealed. Finally, the composite constraint model and bearing capacity calculation method are proposed.

The Static Characteristics of Hydrostatic Journal Bearings (정압저어널 베어링의 정특성 해석)

  • Park, Cheon-Hong;Kim, Seok-Il;Lee, Hu-Sang
    • 한국기계연구소 소보
    • /
    • s.18
    • /
    • pp.21-27
    • /
    • 1988
  • In this study, a series of experiments and analyses are performed to estimate the static characteristics of hydrostatic journal bearing such as load capacity, pressure change in each recess, eccentricity of spindle, etc. The experiments are carried out for a multi-recess type journal bearing with capillary restrictor. The Finite Element Method(FEM) is used for the analyses. The predicted load capacity under the condition of stationary or eccentric ratio of bellow 0.2 of the spindle shows excellent agreement with the measured. But, with an increase of the eccentric ratio when the spindle is rotating, the predicted load capacity is largely estimated than the measured. It seems that the difference is mainly caused among others from the fact that the effect of oil-viscosity variation due to the temperature change in the bearing is not introduced into the analyses. The analysis method proposed to estimate the static characteristics of hydrostatic journal bearing is considered to be very reliable since the predicted results are overall in good agreement with the measured.

  • PDF

Estimation of Bearing Capacity for In-Situ Top-Base Method by Field Experimental Plate Load Test (현장평판재하시험에 의한 현장타설형 팽이말뚝기초의 지지력산정)

  • Shin, Eun-Chul;Ahn, Min-Hye
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • The problems like a deterioration of loading bearing capacity, an exaggeration of settlement and lateral deformation are able to be generated, meanwhile structures are built in soft ground. Top-Base method is belonged to a rigidity mat foundation method which is used to surface treatment of soft ground. This method makes an effect to increase the bearing capacity of foundation using friction force, and prevent the differential settlement. Further more, the In-Situ Top-Base method has advantages in the phase of economic effect by reduction of the construction cost and offers an expediency on construction comparing with precast products. This paper presents the way of the estimation of bearing capacity for In-Situ Top-Base method through field plate load test in soft ground. It utilizes the results to a future design by analyzing the properties in the existing study and designs through these analysis and calculating the top-base method's reasonable range.

An Experimental Study on Settlement Reduction of Artificial Reef using Geosynthetics (토목섬유를 이용한 인공어초 침하 저감에 대한 실험 연구)

  • Ha, Yong-Soo;Kim, Yun-Tae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.3
    • /
    • pp.21-29
    • /
    • 2015
  • An artificial reef is a human-made underwater structure to improve marine environment and to provide a habitat for fish and other ocean wildlife. An artificial reef is placed on the ocean ground. In soft ground like most of the seabed soil, the ground has been settled due to weight of artificial reef. This study investigated the bearing capacity and settlement reduction effect of geosynthetics which were reinforced on the ground in a large size tank. Penetration tests and large soil tank laboratory tests were performed to investigate settlement reduction effect and bearing capacity on artificial reef with different spreading area of geogrid. Laboratory test results indicate that the spreaded geogrid under artificial reef reduce the settlement of ground and increase bearing capacity of ground.

Bearing Capacity Characteristics of Stone Column by Numerical Analysis (수치해석에 의한 쇄석기둥의 지지력 특성)

  • Chun, Byung-Sik;Kim, Baek-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.1
    • /
    • pp.75-84
    • /
    • 2004
  • Stone column is one of the soft ground improvement method, which can enhance ground conditions such as the settlement reduction and the increasement of bearing capacity with applying the crushed stone instead of sand. In recent, general construction material, sand is in short of supply. Therefore, the bearing capacity improvement by the stone column is considered as the alternative method needed in many cases so the bearing capacity estimation is considered as important point. Nevertheless, adequate estimation methods to predict bearing capacity of stone column considering stone column and improvement effect of ground is not yet prepared. For the analysis of above mentioned points, the behavior of stone column were simulated as numerically on various property cases of crushed stone and surrounded ground. Through the numerical analysis of simulation results, the formula for the bearing capacity estimation of stone column was suggested. This formula was verified by comparing the prediction result of in situ test.

  • PDF