• Title/Summary/Keyword: effect of aspect ratio

Search Result 769, Processing Time 0.034 seconds

EFFECT OF ASPECT RATIO ON SLIP FLOW IN RECTANGULAR MICROCHANNELS

  • Islam, Md.Tajul;Lee, Yeon-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2803-2810
    • /
    • 2007
  • Three dimensional numerical studies were carried out to investigate the effect of aspect ratio on gas slip flow in rectangular microchannels. We focused on aspect ratio effect on slip velocity, pressure distribution and mass flow rate. As aspect ratio decreases the wall slip velocity also decreases. As a result nonlinearity of pressure distribution increases. The slip velocities on sides and top/bottom walls are different and this difference decreases with increasing aspect ratio. These two velocities are equal when aspect ratio is 1. The ratios of slip mass flow rate over noslip mass flow rate increases with increasing aspect ratios.

  • PDF

Experimental and Improved Numerical Studies on Aerodynamic Characteristics of Low Aspect Ratio Wings for a Wing-In Ground Effect Ship

  • Ahn, Byoung-Kwon;Kim, Hyung-Tae;Lee, Chang-Sup;Lew, Jae-Moon
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.3
    • /
    • pp.14-25
    • /
    • 2008
  • Recently, there has been a serious effort to design a wing in ground effect (WIG) craft. Vehicles of this type might use low aspect ratio wings defined as those with smaller than 3. Design and prediction techniques for fixed wings of relatively large aspect ratio are reasonably well developed. However, Aerodynamic problems related to vortex lift on wings of low aspect ratio have made it difficult to use existing techniques. In this work, we firstly focus on understanding aerodynamic characteristics of low aspect ratio wings and comparing the results from experimental measurements and currently available numerical predictions for both inviscid and viscous flows. Second, we apply an improved numerical method, "B-spline based high panel method with wake roll-up modeling", to the same problem.

Effect of Internal Swirler Angle and Swirl Chamber Aspect Ratio of Nozzle on Spray Characteristics (노즐 내부 스월러각과 스월실 형상비 변화가 분무특성에 미치는 영향)

  • Kim, Y.J.;Jung, H.C.;Jung, J.W.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.8 no.4
    • /
    • pp.39-45
    • /
    • 2003
  • The Objective of this study is to investigate the effect of internal swiller angle and swirl chamber aspect ratio of nozzle on spray characteristics for application of spray system in micro fabrication process. The macro-spray characterictics such as the spray angle and breakup process were obtained by photographs illustrating atomization. The micro-spray characteristics such as droplet size and axial velocity were measured by using PDA with swirler angle and swirl chamber aspect ratio. The swiller angles were $13.5^{\circ},\;27^{\circ},\;and\;40.5^{\circ}$. The swirl chamber aspect ratios were 1.2, 1.6, and 2.0. It was found that the smaller swirl chamber aspect ratio was, the larger axial velocity and drop size were.

  • PDF

Effect of the Swirler Angle and Aspect Ratio of Nozzle on the Mean Velocity and SMD of Twin Sprays (노즐의 스월러각과 형상비가 이중분무의 평균속도와 입경의 크기에 미치는 영향)

  • Kim, Young-Jin;Jung, Ji-Won;Choi, Gyoung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1459-1466
    • /
    • 2004
  • The purpose of this study is to investigate the effect of swirler angle and the aspect ratio of swirl chamber of nozzle on the characteristics of single and twin spray. The characteristics of sprays have been investigated by measuring the spray angle, droplet size and velocity. Visualization of spray was conducted to obtain the spray angle and breakup process. The spray characteristics such as droplet size and velocity were measured by Phase Doppler Anemometry(PDA). It was found that the spray angle was increased with increasing the swirler angle. For both sprays, the axial velocity and SMD were decreased with increasing the swirler angle. It was also shown that the axial velocity and SMD were decreased with increasing the aspect ratio of swirl chamber, but for the twin spray, the axial velocity and SMD were not influenced significantly by the changing the aspect ratio of swirl chamber. The effect of swirler angle on the spray characteristics was greater than the aspect ratio of swirl chamber for single spray. The nozzle pitch was one of the important factors affecting the spray characteristics of twin spray.

The Effect of the Aspect Ratio on the Natural Frequency of the Advanced Composite Structures (복합신소재 구조물의 형상비에 따른 고유진동수의 영향)

  • Kim, Yun Young;Han, Bong Koo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.18-23
    • /
    • 2014
  • In this paper. the effects of the aspect ratio on the natural frequency of the advanced composite road structures is studied. The advanced composite structures are too difficult for such design engineers for construction and some simple but accurate enough methods are necessary. Some laminate orientations have decreasing values of $D_{16}$, $B_{16}$, $D_{26}$ and $B_{26}$ stiffnesses as the ply number increases. The plate aspect ratio considered is from 1 to 5. Most of the road structures have large aspect ratios, for such cases further simplification is possible by neglecting the effect of the longitudinal moment terms.

Effect of Aspect Ratio on Gas Microchannel Flow (마이크로채널 흐름에 관한 종횡비의 영향)

  • Tajul, Islam;Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.16-21
    • /
    • 2007
  • Three dimensional numerical study was carried out to investigate the effect of aspect ratio on microchannel flow. We considered five straight rectangular channels with aspect ratios (height/width) 0.2, 0.4, 0.6, 0.8 and 1.0. Nitrogen gas flow was investigated for both slip and noslip wall boundary conditions. Isothermal wall condition was assumed. We used control volume method for this simulation. The slip velocity increases with the increase of aspect ratio. Friction coefficient decreases with the increase of aspect ratio. Slip friction coefficient is lower than noslip friction coefficient. Mass flow rate of slip model is higher than that of noslip model. We compared our results with the experimental result reported in the literature. The agreement was good.

  • PDF

Optimization of GTAW Parameters for Horizontal Welding of a STS316L Pipe (STS316L 강관의 수평자세 용접을 위한 GTAW 용접조건의 최적화)

  • Lee, Hyoung-Keun;Bang, Kyoung-Sik
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.47-52
    • /
    • 2015
  • In this study, it was tried to analyze the effects of welding parameters on the weld penetration and aspect ratio when a STS316L pipe was welded in a horizontal position by GTAW. Experiments were systematically designed using a L18 orthogonal array, and the effects of welding parameters were statistically analyzed by ANOVA(Analysis of Variance). The shielding gas type has the largest effect on both the penetration and aspect ratio. The welding current type and shielding gas flow rate have a little effect on the penetration, whereas the electrode tip angle has a little effect on the aspect ratio. When welded at a selected welding condition, which is composed of He shielding gas, pulse current of 300/45 A, electrode tip angle of 90o, and shielding gas flow rate of 30 l/min, the estimated interval at least 95 % confidence was $1.99{\pm}0.18mm$ for the penetration and $0.31{\pm}0.04$ for the aspect ratio. From the confirmation experiments, the average penetration and aspect ratio were well agreed with the estimation as 1.96 mm and 0.30, respectively. Additionally, the effects of the welding speed and welding current on the penetration and aspect ratio were experimented and analyzed by linear regression. The penetration was linearly increased with the decrease of the welding speed and with the increase of the welding current, but the aspect ratio showed a tendency to a little decrease with the increase of both the welding speed and current.

Effect of Aspect Ratio and Location of Outlets on Ventilation Performance in a Dry Room (Dry Room에서 종횡비와 배기구 위치가 환기성능에 미치는 영향)

  • 이관수;임광옥;최석호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.324-331
    • /
    • 2002
  • The characteristics of moisture ventilation in a dry room are studied numerically The behaviors of moisture ventilation are analyzed by varying the aspect ratio of the horizontal plane and for various positions of the outlets in the room. Three different ventilation efficiencies have been used to examine the effect of the longitudinal arrangement of outlets and transverse arrangement of outlets for each aspect ratio on ventilation inside the room. It is shown that the ventilation efficiency in the dry room can be improved by arranging the outlets transversely in the cases that the aspect ratio is less than three and longitudinally in the cases that it is greater than four.

Effect of Specimen Size on Fatigue crack Growth Rate in Steels (강재의 피로균열전파율에 미치는 시험편 크기의 영향)

  • 안석화
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.99-105
    • /
    • 2000
  • This paper describes the effect of specimen size on fatigue crack growth rate for the offshore structural high-tensile-strength steel BS4360 and machine structural steel SM45C. The purpose of the present study is to investigate the effect of stress ratio aspect ratio specimen width and specimen thickness of the fatigue crack growth behavior. Compact tension specimens with a LT orientation for BS4360 and SM45C steels were used, All testing was done at constant stress intensity factor range controlled fatigue crack growth condition. The investigation demonstrates that the fatigue crack growth rate is increased with increasing stress ratio and specimen thickness and is decreased with increasing specimen width. The fatigue crack growth rate is unaffected by aspect ratio until a/W=0.50 but is increased by increasing spect ratio from a/W=0.55.

  • PDF

Numerical Simulation of Ventilation Performance in a Dry Room (극저습 공조실의 환기성능에 대한 수치적 모사)

  • Choe, Seok-Ho;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.594-603
    • /
    • 2002
  • The characteristics of moisture ventilation in a dry room were studied numerically The effect of three important parameters: position of outlets, aspect ratio($\beta$) of horizontal plane and air exchange rate(N), was analyzed by using the scales of ventilation efficiency. The ventilation performance was evaluated by varying the aspect ratio and air exchange rate in the four types of outlet position. It was shown that the ventilation performance was improved by decreasing the aspect ratio in the longitudinal arrangement of outlet. The highest ventilation performance was determined when $\beta$ was 4 in the transverse arrangement of outlet. Regardless of the aspect ratio, the ceiling arrangement of outlet played more dominant effect on the ventilation efficiency than the floor arrangement. In every type and aspect ratio, the increase of air exchange rate to improve ventilation performance was appropriate up to N=60 /h.