• Title/Summary/Keyword: education information

Search Result 17,613, Processing Time 0.055 seconds

The Risk Assessment of the Fire Occurrence According to Urban Facilities in Jinju-si (진주시 도시시설물별 화재발생 위험도 평가)

  • Bae, Gyu Han;Won, Tae Hong;Yoo, Hwan Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.43-50
    • /
    • 2016
  • Urbanization in Korea has increased significantly and subsequently, various facilities have been concentrated in urban areas at high speed in accordance with a growing urban population. Accordingly, damages have occurred due to a variety of disasters. In particular, fire damage among the social disasters caused the most severe damage in urban areas along with traffic accidents. 44,432 cases of fire occurred in 2015 in Korea. Due to these accidents, 253 were killed and property damage of 4,50 billion won was generated. However, despite the efforts to reduce a variety of damage, fire danger still remains high. In this regard, this study collected fire data, generated from 2007 to 2014 through the Jinju Fire Department and the National Fire Data System(NFDS) and calculated fire risk by analyzing the clustering of fire cases and facilities in Jinju-si based on the current DB of facilities, offered by the Ministry of Government Administration and Home Affairs. As a result, the risk ratings of fire occurrence were classified as four stages under the standards of the US Society of Fire Protection Engineers(SEPE). Business facilities, entertainment facilities, and automobile facilities were classified as the highest A grade, detached houses, Apartment houses, education facilities, sales facilities, accommodation, set of facilities, medical facilities, industrial facilities, and life service facilities were classified as U grade, and other facilities were classified as EU grade. Finally, hazardous production facilities were classified as BEU grade, the lowest grade. In addition, in the case of setting the standard with loss of life, the highest risk facility was the hazardous production facilities, while in the case of setting the standard with property damage, a set of facilities and industrial facilities showed the highest risk. In this regard, this study is expected to be effectively utilized to establish the fire reduction measures against facilities, distributed in urban space by calculating risk grades regarding the generation frequency, casualties, and property damage, through the classification of fire, occurred in the city, according to the facilities.

Exploring the 4th Industrial Revolution Technology from the Landscape Industry Perspective (조경산업 관점에서 4차 산업혁명 기술의 탐색)

  • Choi, Ja-Ho;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.2
    • /
    • pp.59-75
    • /
    • 2019
  • This study was carried out to explore the 4th Industrial Revolution technology from the perspective of the landscape industry to provide the basic data necessary to increase the virtuous circle value. The 4th Industrial Revolution, the characteristics of the landscape industry and urban regeneration were considered and the methodology was established and studied including the technical classification system suitable for systematic research, which was selected as a framework. First, the 4th Industrial Revolution technology based on digital data was selected, which could be utilized to increase the value of the virtuous circle for the landscape industry. From 'Element Technology Level', and 'Core Technology' such as the Internet of Things, Cloud Computing, Big Data, Artificial Intelligence, Robot, 'Peripheral Technology', Virtual or Augmented Reality, Drones, 3D 4D Printing, and 3D Scanning were highlighted as the 4th Industrial Revolution technology. It has been shown that it is possible to increase the value of the virtuous circle when applied at the 'Trend Level', in particular to the landscape industry. The 'System Level' was analyzed as a general-purpose technology, and based on the platform, the level of element technology(computers, and smart devices) was systematically interconnected, and illuminated with the 4th Industrial Revolution technology based on digital data. The application of the 'Trend Level' specific to the landscape industry has been shown to be an effective technology for increasing the virtuous circle values. It is possible to realize all synergistic effects and implementation of the proposed method at the trend level applying the element technology level. Smart gardens, smart parks, etc. have been analyzed to the level they should pursue. It was judged that Smart City, Smart Home, Smart Farm, and Precision Agriculture, Smart Tourism, and Smart Health Care could be highly linked through the collaboration among technologies in adjacent areas at the Trend Level. Additionally, various utilization measures of related technology applied at the Trend Level were highlighted in the process of urban regeneration, public service space creation, maintenance, and public service. In other words, with the realization of ubiquitous computing, Hyper-Connectivity, Hyper-Reality, Hyper-Intelligence, and Hyper-Convergence were proposed, reflecting the basic characteristics of digital technology in the landscape industry can be achieved. It was analyzed that the landscaping industry was effectively accommodating and coordinating with the needs of new characters, education and consulting, as well as existing tasks, even when participating in urban regeneration projects. In particular, it has been shown that the overall landscapig area is effective in increasing the virtuous circle value when it systems the related technology at the trend level by linking maintenance with strategic bridgehead. This is because the industrial structure is effective in distributing data and information produced from various channels. Subsequent research, such as demonstrating the fusion of the 4th Industrial Revolution technology based on the use of digital data in creation, maintenance, and service of actual landscape space is necessary.

A Study on the Consciousness Survey of Improvement of Emergency Rescue Training -Based on the Fire Fighting Organizations in Gangwon Province- (긴급구조훈련 개선에 관한 의식조사 연구 -강원도 소방조직을 중심으로-)

  • Choi, Yunjung;Koo, Wonhoi;Baek, Minho
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.3
    • /
    • pp.440-449
    • /
    • 2019
  • Purpose: Fire-fighting organizations are the very first agencies that take actions at a disaster scene, and emergency rescue training is carried out for prompt and systematic response. However, there is a need for a change due to the limitations in emergency rescue trainings such as perfunctory trainings or trainings without considering regional or environmental characteristics. Method: This study is to conduct theoretical review with regard to emergency rescue training and present a measure to improve the emergency rescue training through attitude survey targeting fire-fighting organizations in Gangwon area. Result: Facilities that cause difficulties when doing emergency rescue activity were mostly hazardous material storage and processing facilities. In terms of the level of emergency rescue and response task, most respondents answered that the emergency rescue was insufficient. The respondents answered that the effectiveness of emergency rescue training was helpful, but some responses showed that the training was not helpful because of scenario-based training, seeming training, similar training carried out every year, unrealistic training, and lack of competent authorities' interest and perfunctory participations. Most respondents answered for the appropriateness of emergency rescue training and evaluation that they were satisfied, however, they were not satisfied with the evaluation methods irrelevant to the type of training, evaluation methods requiring unnecessary training scale, and evaluation methods leading perfunctory participations of competent authorities. Lastly, respondents mostly answered that training reflecting various damage situations are necessary regarding the demand on the improvement of emergency rescue training. Conclusion: The improvement measures for emergency rescue training are as follows. First, it is necessary to set and prepare various training contents in accordance with regional characteristics by reviewing major disasters occurred in the region. Second, it is necessary to revise the emergency rescue training guidelines and manuals for appropriate training plan for each fire station, provide education and training for working-level staff members, and establish training in a way that types, tactics, and strategies of emergency rescue training could be utilized practically. Third, it is necessary to prepare a scheme that can lead participation and provide incentive or penalty from the planning stage of training in order to increase the participation of supporting and competent authorities when an actual disaster occurs. Fourth, it is necessary to establish support arrangements and cooperative systems by authority through training by fire stations or zones in preparation for disaster situations that may occur simultaneously. Fifth, it is necessary to put emphasis on the training process rather than the result for emergency rescue training and evaluation, pay attention to the identification of supplement points for each disaster situation and make improvements. Especially, type or form of training should be considered rather than evaluating the execution status of detailed processes, and the evaluation measure that can consider the completeness (proficiency) of training and the status of role performance rather than the scale of training should be prepared. Sixth, type and method of training should be improved in accordance with the characteristics of each fire station by identifying the demand of working-level staff members for an efficient emergency rescue training.

Agrifood consumer competency index and food consumption behaviors based on the 2019 Consumption Behaviors Survey for Food (농식품 소비자역량지수와 식품소비행태에 관한 연구: 2019년 식품소비행태조사자료를 이용하여)

  • Kim, Eun-kyung;Kwon, Yong-seok;Lee, Da Eun;Jang, Hee Jin;Park, Young Hee
    • Journal of Nutrition and Health
    • /
    • v.54 no.2
    • /
    • pp.199-210
    • /
    • 2021
  • Purpose: This study investigated the food consumption behaviors in Korean adults, according to the agrifood consumer competency index (ACCI). Methods: Data obtained from the 2019 Consumption Behaviors Survey for Food were analyzed. A total of 6,176 adults (2,783 males, 3,393 females) aged ≥ 19 years, were included in the study. Based on the score of agrifood consumer competency index, the subjects were classified into three groups. The dietary habits, eating-out and food-delivery/take-out behaviors, opinion of food labeling, and concerns for domestic products were compared among the 3 groups. Results: The ACCI scores of the male and female subjects were 63.6 and 64.8, respectively. Subjects of both genders in the highest tertile of the ACCI were more likely to have a higher education level and higher health concerns, as compared to subjects in the lowest tertile (p < 0.05). Male subjects having highest tertile of the ACCI reported significantly more exercise and alcohol consumption, as compared to subjects in the lowest tertile (p < 0.05). A higher score of the ACCI also portrayed a higher satisfaction in own diet and greater checking of the food label. Moreover, subjects with a higher score of the ACCI showed greater satisfaction and reliability in the food label, as well as increased concerns for domestic agrifoods, local foods, and eco-friendly foods. Subjects in the lowest tertile of the ACCI acquired their dietary information from acquaintances, whereas subjects in the highest tertile of the ACCI learnt the information from food labels themselves. Conclusion: These results are indicative of the food consumption and behaviors of Korean adults according to their ACCI scores, and provide basic data that will be useful for implementing an effective food policy.

Improving the nutrition quotient and dietary self-efficacy through personalized goal setting and smartphone-based nutrition counseling among adults in their 20s and 30s (개인별 목표 설정과 스마트폰 기반 영양상담을 통한 20-30대 성인의 영양지수 및 식이 자아효능감 향상)

  • Dahyeon Kim;Dawon Park;Young-Hee Han;Taisun Hyun
    • Journal of Nutrition and Health
    • /
    • v.56 no.4
    • /
    • pp.419-438
    • /
    • 2023
  • Purpose: This study examines the effectiveness of personalized goal setting and smartphone-based nutrition counseling among adults in their 20s and 30s. Methods: Nutrition counseling was conducted for a total of 30 adults through a 1:1 chat room of a mobile instant messenger, once a week for 8 weeks. The first week of counseling included a preliminary online questionnaire survey and a dietary intake survey. Based on the results of the preliminary survey, 2 dietary goals were set in the second week and the participants were asked to record their achievements on a daily checklist. From the third week onwards, counselors sent feedback messages based on the checklist and provided information on dietary guidelines in a card news format every week. Post-counseling questionnaires and dietary intake surveys were conducted in the seventh week. Changes in dietary habits during the counseling were reviewed in the eighth week, followed by a questionnaire survey on the evaluation of the counseling process. Results: The nutrition quotient (NQ) scores and self-efficacy scores were significantly higher after nutrition counseling. The NQ scores of consumption frequencies of fruits, milk and dairy products, nuts, fast food, Ramyeon, sweet and greasy baked products, sugarsweetened beverages, the number of vegetable dishes at meals, and breakfast frequency were significantly higher after nutrition counseling. The intake of protein, vitamin A, thiamin, riboflavin, folate, calcium, and iron, and the index of nutritional quality of vitamin A, riboflavin, folate, calcium, and iron were higher after nutrition education. The participants were satisfied with the nutrition counseling program and the provided nutrition information. Conclusion: Personalized goal setting and smartphone-based nutrition counseling were found to be effective in improving the quality of diet and self-efficacy in young adults. Similar results were obtained in both the underweight/normal weight and the overweight/obese groups.

A Study on the Variation of River Vegetation by Seasonal Precipitation Patterns (계절별 강수 패턴에 따른 하천 식생 변화 양상 연구)

  • Hee-Jeong JEONG;Seung-Yeon YU;Eun-Ji CHO;Yong-Joo JI;Yong-Suk KIM;Hyun-Kyung OH;Jong-Sung LEE;Hyun-Do JANG;Dong-Gil CHO
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.2
    • /
    • pp.1-19
    • /
    • 2023
  • In Korea, excessive vegetation in rivers made up of sand and gravel is emerging as a nationwide problem, which is attributed to increased spring precipitation and decreased annual precipitation. Therefore, this study was conducted for the purpose of identifying the effect of changes in precipitation patterns on river vegetation in Namcheon, Gyeongju, and analyzing the area of vegetation and ecological characteristics. As a result of the study, the amount of monthly precipitation in the summer of Namcheon decreased after 2007, and the area of vegetation increased continuously compared to the area of the sandbank. The proportion of naturalized plants increased steadily when precipitation continued to a level that did not cause flooding, but the area occupied by naturalized plants was small. Also, when the water level is maintained, the species diversity is low due to the dominance of a single species, and the dominant species was mainly native plants. Dominance of native plants inhibited the growth of naturalized plants, but the vegetation area increased even more. Therefore, it is necessary to manage the spread of vegetation itself rather than the division of native plants and naturalized plants in order to eliminate the active growth and prosperity of river vegetation. High water levels and continuous flooding caused by torrential rains in summer disturbed the plant communities, and vegetation formed afterwards was mainly native plants. Such flooding in river ecosystems is a positive factor for the emergence of native plants and over-formed vegetation communities, so it should be considered when establishing a vegetation management plan.

A Study on Human-Robot Interaction Trends Using BERTopic (BERTopic을 활용한 인간-로봇 상호작용 동향 연구)

  • Jeonghun Kim;Kee-Young Kwahk
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.185-209
    • /
    • 2023
  • With the advent of the 4th industrial revolution, various technologies have received much attention. Technologies related to the 4th industry include the Internet of Things (IoT), big data, artificial intelligence, virtual reality (VR), 3D printers, and robotics, and these technologies are often converged. In particular, the robotics field is combined with technologies such as big data, artificial intelligence, VR, and digital twins. Accordingly, much research using robotics is being conducted, which is applied to distribution, airports, hotels, restaurants, and transportation fields. In the given situation, research on human-robot interaction is attracting attention, but it has not yet reached the level of user satisfaction. However, research on robots capable of perfect communication is steadily being conducted, and it is expected that it will be able to replace human emotional labor. Therefore, it is necessary to discuss whether the current human-robot interaction technology can be applied to business. To this end, this study first examines the trend of human-robot interaction technology. Second, we compare LDA (Latent Dirichlet Allocation) topic modeling and BERTopic topic modeling methods. As a result, we found that the concept of human-robot interaction and basic interaction was discussed in the studies from 1992 to 2002. From 2003 to 2012, many studies on social expression were conducted, and studies related to judgment such as face detection and recognition were conducted. In the studies from 2013 to 2022, service topics such as elderly nursing, education, and autism treatment appeared, and research on social expression continued. However, it seems that it has not yet reached the level that can be applied to business. As a result of comparing LDA (Latent Dirichlet Allocation) topic modeling and the BERTopic topic modeling method, it was confirmed that BERTopic is a superior method to LDA.

COVID-19 Rapid Antigen Test Results in Preschool and School (March 2 to May 1, 2022) (유치원·학교 구성원의 코로나19 신속항원검사 결과(2022년 3월 2일부터 5월 1일까지))

  • Gowoon Yun;Young-Joon Park;Eun Jung Jang;Sangeun Lee;Ryu Kyung Kim;Heegwon Jeong;Jin Gwack
    • Pediatric Infection and Vaccine
    • /
    • v.31 no.1
    • /
    • pp.113-121
    • /
    • 2024
  • Purpose: In response to the surge in coronavirus disease 2019 (COVID-19) omicron variant cases, we have implemented preemptive testing for preschool and school. The purpose is to quickly detect COVID-19 cases using a rapid antigen test (RAT) kit so that normal school activities can continue. Methods: The results entered in The Healthcare Self-Test App were merged with the information on the status of confirmed cases in the COVID-19 Information Management System by Korea Disease Control and Prevention Agency (KDCA) for preschool and school of students and staffs March 2 to May 1, 2022 to analyze the RAT positive rate and positive predictive value of RAT. Results: In preschool and school 19,458,575 people were tested, weekly RAT positive rate ranged from 1.10% to 5.90%, positive predictive value of RAT ranged from 86.42% to 93.18%. By status, RAT positive rate ranged from 1.13% to 6.16% for students, 0.99% to 3.93% for staffs, positive predictive value of RAT ranged from 87.19% to 94.03% for students, 77.55% to 83.10% for staffs. RAT positive rate by symptoms ranged from 76.32% to 88.02% for those with symptoms and 0.34% to 1.11% for those without symptoms. As a result of preschool and school RAT, 943,342 confirmed cases were preemptively detected, before infection spread in preschool and school. Conclusions: RAT was well utilized to detect confirmed cases at an early stage, reducing the risk of transmission to minimize the educational gap in preschool and school. To compensate for the limitations of RAT, further research should continue to reevaluate the performance of RAT as new strains of viruses continue to emerge. We will have to come up with various ways to utilize it, such as performing periodic and repeated RAT and parallel polymerase chain reaction.

Clickstream Big Data Mining for Demographics based Digital Marketing (인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝)

  • Park, Jiae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.143-163
    • /
    • 2016
  • The demographics of Internet users are the most basic and important sources for target marketing or personalized advertisements on the digital marketing channels which include email, mobile, and social media. However, it gradually has become difficult to collect the demographics of Internet users because their activities are anonymous in many cases. Although the marketing department is able to get the demographics using online or offline surveys, these approaches are very expensive, long processes, and likely to include false statements. Clickstream data is the recording an Internet user leaves behind while visiting websites. As the user clicks anywhere in the webpage, the activity is logged in semi-structured website log files. Such data allows us to see what pages users visited, how long they stayed there, how often they visited, when they usually visited, which site they prefer, what keywords they used to find the site, whether they purchased any, and so forth. For such a reason, some researchers tried to guess the demographics of Internet users by using their clickstream data. They derived various independent variables likely to be correlated to the demographics. The variables include search keyword, frequency and intensity for time, day and month, variety of websites visited, text information for web pages visited, etc. The demographic attributes to predict are also diverse according to the paper, and cover gender, age, job, location, income, education, marital status, presence of children. A variety of data mining methods, such as LSA, SVM, decision tree, neural network, logistic regression, and k-nearest neighbors, were used for prediction model building. However, this research has not yet identified which data mining method is appropriate to predict each demographic variable. Moreover, it is required to review independent variables studied so far and combine them as needed, and evaluate them for building the best prediction model. The objective of this study is to choose clickstream attributes mostly likely to be correlated to the demographics from the results of previous research, and then to identify which data mining method is fitting to predict each demographic attribute. Among the demographic attributes, this paper focus on predicting gender, age, marital status, residence, and job. And from the results of previous research, 64 clickstream attributes are applied to predict the demographic attributes. The overall process of predictive model building is compose of 4 steps. In the first step, we create user profiles which include 64 clickstream attributes and 5 demographic attributes. The second step performs the dimension reduction of clickstream variables to solve the curse of dimensionality and overfitting problem. We utilize three approaches which are based on decision tree, PCA, and cluster analysis. We build alternative predictive models for each demographic variable in the third step. SVM, neural network, and logistic regression are used for modeling. The last step evaluates the alternative models in view of model accuracy and selects the best model. For the experiments, we used clickstream data which represents 5 demographics and 16,962,705 online activities for 5,000 Internet users. IBM SPSS Modeler 17.0 was used for our prediction process, and the 5-fold cross validation was conducted to enhance the reliability of our experiments. As the experimental results, we can verify that there are a specific data mining method well-suited for each demographic variable. For example, age prediction is best performed when using the decision tree based dimension reduction and neural network whereas the prediction of gender and marital status is the most accurate by applying SVM without dimension reduction. We conclude that the online behaviors of the Internet users, captured from the clickstream data analysis, could be well used to predict their demographics, thereby being utilized to the digital marketing.

A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github (텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로)

  • Chong, JiSeon;Kim, Dongsung;Lee, Hong Joo;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • Artificial intelligence (AI) is one of the main driving forces leading the Fourth Industrial Revolution. The technologies associated with AI have already shown superior abilities that are equal to or better than people in many fields including image and speech recognition. Particularly, many efforts have been actively given to identify the current technology trends and analyze development directions of it, because AI technologies can be utilized in a wide range of fields including medical, financial, manufacturing, service, and education fields. Major platforms that can develop complex AI algorithms for learning, reasoning, and recognition have been open to the public as open source projects. As a result, technologies and services that utilize them have increased rapidly. It has been confirmed as one of the major reasons for the fast development of AI technologies. Additionally, the spread of the technology is greatly in debt to open source software, developed by major global companies, supporting natural language recognition, speech recognition, and image recognition. Therefore, this study aimed to identify the practical trend of AI technology development by analyzing OSS projects associated with AI, which have been developed by the online collaboration of many parties. This study searched and collected a list of major projects related to AI, which were generated from 2000 to July 2018 on Github. This study confirmed the development trends of major technologies in detail by applying text mining technique targeting topic information, which indicates the characteristics of the collected projects and technical fields. The results of the analysis showed that the number of software development projects by year was less than 100 projects per year until 2013. However, it increased to 229 projects in 2014 and 597 projects in 2015. Particularly, the number of open source projects related to AI increased rapidly in 2016 (2,559 OSS projects). It was confirmed that the number of projects initiated in 2017 was 14,213, which is almost four-folds of the number of total projects generated from 2009 to 2016 (3,555 projects). The number of projects initiated from Jan to Jul 2018 was 8,737. The development trend of AI-related technologies was evaluated by dividing the study period into three phases. The appearance frequency of topics indicate the technology trends of AI-related OSS projects. The results showed that the natural language processing technology has continued to be at the top in all years. It implied that OSS had been developed continuously. Until 2015, Python, C ++, and Java, programming languages, were listed as the top ten frequently appeared topics. However, after 2016, programming languages other than Python disappeared from the top ten topics. Instead of them, platforms supporting the development of AI algorithms, such as TensorFlow and Keras, are showing high appearance frequency. Additionally, reinforcement learning algorithms and convolutional neural networks, which have been used in various fields, were frequently appeared topics. The results of topic network analysis showed that the most important topics of degree centrality were similar to those of appearance frequency. The main difference was that visualization and medical imaging topics were found at the top of the list, although they were not in the top of the list from 2009 to 2012. The results indicated that OSS was developed in the medical field in order to utilize the AI technology. Moreover, although the computer vision was in the top 10 of the appearance frequency list from 2013 to 2015, they were not in the top 10 of the degree centrality. The topics at the top of the degree centrality list were similar to those at the top of the appearance frequency list. It was found that the ranks of the composite neural network and reinforcement learning were changed slightly. The trend of technology development was examined using the appearance frequency of topics and degree centrality. The results showed that machine learning revealed the highest frequency and the highest degree centrality in all years. Moreover, it is noteworthy that, although the deep learning topic showed a low frequency and a low degree centrality between 2009 and 2012, their ranks abruptly increased between 2013 and 2015. It was confirmed that in recent years both technologies had high appearance frequency and degree centrality. TensorFlow first appeared during the phase of 2013-2015, and the appearance frequency and degree centrality of it soared between 2016 and 2018 to be at the top of the lists after deep learning, python. Computer vision and reinforcement learning did not show an abrupt increase or decrease, and they had relatively low appearance frequency and degree centrality compared with the above-mentioned topics. Based on these analysis results, it is possible to identify the fields in which AI technologies are actively developed. The results of this study can be used as a baseline dataset for more empirical analysis on future technology trends that can be converged.