• Title/Summary/Keyword: edge-enhancement

Search Result 330, Processing Time 0.043 seconds

Subjective Imaging Effect Assessment for Intelligent Imaging Terminal Design: a Method for Engineering Site

  • Liu, Haoting;Lv, Ming;Yu, Weiqun;Guo, Zhenhui;Li, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1043-1064
    • /
    • 2020
  • A kind of Subjective Imaging Effect Assessment (SIEA) method and its applications on intelligent imaging terminal design in engineering site are presented. First, some visual assessment indices are used to characterize the imaging effect: the image brightness, the image brightness uniformity, the color image contrast, the image edge blur, the image color difference, the image saturation, the image noise, and the integrated imaging effect index. A linear weighted function is employed to carry out the SIEA computation and the Analytic Hierarchy Process (AHP) technique is used to estimate its weights. Second, a SIEA software is developed. It can play images after the settings of assessment index or assessment reaction time, etc. Third, two cases are used to illustrate the application effects of proposed method: the image enhancement system design for surveillance camera and the imaging environment perception system design for intelligent lighting terminal. A Prior Sequential Stimulus (PSS) experiment is proposed to improve the evaluation stability of SIEA method. Many experiment results have shown the proposed method can realize a stable system design or parameters setting for the intelligent imaging terminal in engineering site.

Image Enhancement Techniques Based on Wavelets (웨이블릿을 이용한 영상개선 기법)

  • 이해성;변혜란;유지상
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1400-1412
    • /
    • 2000
  • In this paper, we propose a technique for image enhancement, especially for denoising and deblocking based on wavelets. In this proposed algorithm, frame wavelet system designed as a optimal edge detector was used. And our theory depends on Lipschitz regularity, spatial correlation, and some important assumptions. The performance of the proposed algorithm was compared with three popular test images in image processing area. Experimental results show that the performance of the proposed algorithm was better than other previous denoising techniques like spatial averaging filter, Gaussian filter, median filter, Wiener filter, and some other wavelet based filters in the aspect of both PSNR and human visual system, The experimental results also show approximately the same capability of deblocking as the previous developed techniques

  • PDF

A Study to Improve the Lift Performance of a Full Spade Rudder with the Coanda Effect (콴다효과를 이용한 전 가동 타의 양력성능 개선에 관한 연구)

  • Seo, Dae-Won;Lee, Seung-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.25-32
    • /
    • 2013
  • The shape of a conventional full spade rudder has been modified to implement the Coanda effect and consequential changes in the flow characteristics are carefully examined to show the significant enhancement in the lift performance. A preliminary numerical study has been done to identify the optimum configuration of the modified rudder sections. For the purpose, chord wise locations of the jet slit and the radii of the trailing edge were varied in several ways and the changes in the lift characteristics have been observed at the various angles of attack, particularly focusing on the usefulness of the Coanda effect upon delaying the stall or increase in the circulation. Making the most use of the results so attained, full spade rudder of a VLCC has been reformed to realize the Coanda effect. A series of model experiments and numerical simulations are performed to confirm the effectiveness of the Coanda effect in improving the performance of the modified rudder. It is found that considerable enhancement in the lift performance of the rudder is plausible at any rudder angle if an optimum jet momentum is provided.

Enhancement of thermoelectric properties of MBE grown un-doped ZnO by thermal annealing

  • Khalid, Mahmood;Asghar, Muhammad;Ali, Adnan;Ajaz-Un-Nabi, M.;Arshad, M. Imran;Amin, Nasir;Hasan, M.A.
    • Advances in Energy Research
    • /
    • v.3 no.2
    • /
    • pp.117-124
    • /
    • 2015
  • In this paper, we have reported an enhancement in thermoelectric properties of un-doped zinc oxide (ZnO) grown by molecular beam epitaxy (MBE) on silicon (001) substrate by annealing treatment. The grown ZnO thin films were annealed in oxygen environment at $500^{\circ}C-800^{\circ}C$, keeping a step of $100^{\circ}C$ for one hour. Room temperature Seekbeck measurements showed that Seebeck coefficient and power factor increased from 222 to $510{\mu}V/K$ and $8.8{\times}10^{-6}$ to $2.6{\times}10^{-4}Wm^{-1}K^{-2}$ as annealing temperature increased from 500 to $800^{\circ}C$ respectively. This observation was related with the improvement of crystal structure of grown films with annealing temperature. X-ray diffraction (XRD) results demonstrated that full width half maximum (FWHM) of ZnO (002) plane decreased and crystalline size increased as the annealing temperature increased. Photoluminescence study revealed that the intensity of band edge emission increased and defect emission decreased as annealing temperature increased because the density of oxygen vacancy related donor defects decreased with annealing temperature. This argument was further justified by the Hall measurements which showed a decreasing trend of carrier concentration with annealing temperature.

Enhancement of Luminous Intensity Emission from Incoherent LED Light Sources within the Detection Angle of 10° Using Metalenses

  • Hanlyun Cho;Heonyeong Jeong;Younghwan Yang;Trevon Badloe;Junsuk Rho
    • Nanomaterials
    • /
    • v.12 no.1
    • /
    • pp.153-166
    • /
    • 2022
  • In this work, we present metalenses (MLs) designed to enhance the luminous intensity of incoherent light-emitting diodes (LEDs) within the detection angles of 0° and 10°. The detection angle of 0° refers to the center of the LED. Because the light emitted from LEDs is incoherent and expressed as a surface light source, they are numerically described as a set of point sources and calculated using incoherent summation. The titanium dioxide (TiO2) and amorphous silicon (a-Si) nanohole meta-atoms are designed; however, the full 2π phase coverage is not reached. Nevertheless, because the phase modulation at the edge of the ML is important, an ML is successfully designed. The typical phase profile of the ML enhances the luminous intensity at the center, and the phase profile is modified to increase the luminous intensity in the target detection angle region. Far field simulations are conducted to calculate the luminous intensity after 25 m of propagation. We demonstrate an enhancement of the luminous intensity at the center by 8551% and 2115% using TiO2 and a-Si MLs, respectively. Meanwhile, the TiO2 and a-Si MLs with the modified phase profiles enhance the luminous intensity within the detection angle of 10° by 263% and 30%, respectively.

Extraction of Building Boundary on Aerial Image Using Segmentation and Overlaying Algorithm (분할과 중첩 기법을 이용한 항공 사진 상의 빌딩 경계 추출)

  • Kim, Yong-Min;Chang, An-Jin;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.49-58
    • /
    • 2012
  • Buildings become complex and diverse with time. It is difficult to extract individual buildings using only an optical image, because they have similar spectral characteristics to objects such as vegetation and roads. In this study, we propose a method to extract building area and boundary through integrating airborne Light Detection and Ranging(LiDAR) data and aerial images. Firstly, a binary edge map was generated using Edison edge detector after applying Adaptive dynamic range linear stretching radiometric enhancement algorithm to the aerial image. Secondly, building objects on airborne LiDAR data were extracted from normalized Digital Surface Model and aerial image. Then, a temporary building areas were extracted by overlaying the binary edge map and building objects extracted from LiDAR data. Finally, some building boundaries were additionally refined considering positional accuracy between LiDAR data and aerial image. The proposed method was applied to two experimental sites for validation. Through error matrix, F-measure, Jaccard coefficient, Yule coefficient, and Overall accuracy were calculated, and the values had a higher accuracy than 0.85.

A Real Time Deblocking Technique Using Adaptive Filtering in a Mobile Environment (모바일 환경에서 적응적인 필터링을 이용한 실시간 블록현상 제거 기법)

  • Yoo, Jae-Wook;Park, Dae-Hyun;Kim, Yoon
    • The Journal of Korean Association of Computer Education
    • /
    • v.13 no.4
    • /
    • pp.77-86
    • /
    • 2010
  • In this paper, we propose a real time post-processing visual enhancement technique to reduce the blocking artifacts in block based DCT decoded image for mobile devices that have allocation of the restricted resource. In order to reduce the blocking artifacts effectively even while preserving the image edge to the utmost, the proposed algorithm uses the deblocking filtering or the directional filtering according to the edge detection of the each pixel. After it is discriminated that the pixel to apply the deblocking filtering belongs again to the monotonous area, the weighted average filter with the adaptive mask is applied for the pixel to remove the blocking artifacts. On the other hand, a new directional filter is utilized to get rid of staircase noise and preserve the original edge component. Experimental results show that the proposed algorithm produces better results than those of the conventional algorithms in both subjective and objective qualities.

  • PDF

Numerical Analysis of the Whole Field Flow in a Centrifugal Fan for Performance Enhancement - The Effect of Boundary Layer Fences of Different Configurations

  • Karanth, K. Vasudeva;Sharma, N. Yagnesh
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.110-120
    • /
    • 2009
  • Generally the fluid flows within the centrifugal impeller passage as a decelerating flow with an adverse pressure gradient along the stream wise path. This flow tends to be in a state of instability with flow separation zones on the suction surface and on the front shroud. Hence several experimental attempts were earlier made to assess the efficacy of using boundary layer fences to trip the flow in the regions of separation and to make the flow align itself into stream wise direction so that the losses could be minimized and overall efficiency of the diffusion process in the fan could be increased. With the development of CFD, an extensive numerical whole field analysis of the effect of boundary layer fences in discrete regions of suspected separation points is possible. But it is found from the literature that there have been no significant attempts to use this tool to explore numerically the utility of the fences on the flow field. This paper attempts to explore the effect of boundary layer fences corresponding to various geometrical configurations on the impeller as well as on the diffuser. It is shown from the analysis that the fences located on the impellers near the trailing edge on pressure side and suction side improves the static pressure recovery across the fan. Fences provided at the radial mid-span on the pressure side of the diffuser vane and near the leading edge and trailing edge of the suction side of diffuser vanes also improve the static pressure recovery across the fan.

Small Target Detection Using Bilateral Filter Based on Edge Component (에지 성분에 기초한 양방향 필터 (Bilateral Filter)를 이용한 소형 표적 검출)

  • Bae, Tae-Wuk;Kim, Byoung-Ik;Lee, Sung-Hak;Kim, Young-Choon;Ahn, Sang-Ho;Sohng, Kyu-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9C
    • /
    • pp.863-870
    • /
    • 2009
  • Bilateral filter (BF) is a nonlinear filter for sharpness enhancement and noise removal. The BF performs the function by the two Gaussian filters, the domain filter and the range filter. To apply the BF to infrared (IR) small target detection, the standard deviation of the two Gaussian filters need to be changed adaptively between the background region and the target region. This paper presents a new BF with the adaptive standard deviation based on the analysis of the edge component of the local window, also having the variable filter size. This enables the BF to perform better and become more suitable in the field of small target detection Experimental results demonstrate that the proposed method is robust and efficient than the conventional methods.

Ringing Artifact Removal in Image Restoration Using Wavelet Transform (웨이블릿 변환을 이용한 영상복원의 물결현상 제거 방법)

  • Youn, Jin-Young;Yoo, Yoon-Jong;Jun, Sin-Young;Shin, Jeong-Ho;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.78-87
    • /
    • 2008
  • Digital image find own level core media in multimedia as image restoration technology fields, which remove degradation factor for image enhancement, have been growing. Linear space-invariant image restoration algorithm often introduce ringing artifacts near sharp intensity transition areas. This paper presents a new adaptive post-filtering algorithm for reducing ringing artifact. The proposed method extracts an edge map of the image using wavelet transform Based on the edge information, ringing artifacts are detected, and removed by an adaptive bilateral filter. Experimental results show that the proposed algorithm can efficiently remove ringing artifacts with edge preservation.