• Title/Summary/Keyword: edge-Wiener index

Search Result 4, Processing Time 0.017 seconds

ON THE TOPOLOGICAL INDICES OF ZERO DIVISOR GRAPHS OF SOME COMMUTATIVE RINGS

  • FARIZ MAULANA;MUHAMMAD ZULFIKAR ADITYA;ERMA SUWASTIKA;INTAN MUCHTADI-ALAMSYAH;NUR IDAYU ALIMON;NOR HANIZA SARMIN
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.663-680
    • /
    • 2024
  • The zero divisor graph is the most basic way of representing an algebraic structure as a graph. For any commutative ring R, each element is a vertex on the zero divisor graph and two vertices are defined as adjacent if and only if the product of those vertices equals zero. In this research, we determine some topological indices such as the Wiener index, the edge-Wiener index, the hyper-Wiener index, the Harary index, the first Zagreb index, the second Zagreb index, and the Gutman index of zero divisor graph of integers modulo prime power and its direct product.

THE MULTIPLICATIVE VERSION OF WIENER INDEX

  • Hua, Hongbo;Ashrafi, Ali Reza
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.533-544
    • /
    • 2013
  • The multiplicative version of Wiener index (${\pi}$-index), proposed by Gutman et al. in 2000, is equal to the product of the distances between all pairs of vertices of a (molecular) graph G. In this paper, we first present some sharp bounds in terms of the order and other graph parameters including the diameter, degree sequence, Zagreb indices, Zagreb coindices, eccentric connectivity index and Merrifield-Simmons index for ${\pi}$-index of general connected graphs and trees, as well as a Nordhaus-Gaddum-type bound for ${\pi}$-index of connected triangle-free graphs. Then we study the behavior of ${\pi}$-index upon the case when removing a vertex or an edge from the underlying graph. Finally, we investigate the extremal properties of ${\pi}$-index within the set of trees and unicyclic graphs.

CERTAIN GENERALIZED THORN GRAPHS AND THEIR WIENER INDICES

  • Kathiresan, KM.;Parameswaran, C.
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.793-807
    • /
    • 2012
  • If G is any connected graph of order p; then the thorn graph $G_p^*$ with code ($n_1$, $n_2$, ${\cdots}$, $n_p$) is obtained by adding $n_i$ pendent vertices to each $i^{th}$ vertex of G. By treating the pendent edge of a thorn graph as $P_2$, $K_2$, $K_{1,1}$, $K_1{\circ}K_1$ or $P_1{\circ}K_1$, we generalize a thorn graph by replacing $P_2$ by $P_m$, $K_2$ by $K_m$, $K_{1,1}$ by $K_{m,n}$, $K_1{\circ}K_1$ by $K_m{\circ}K_1$ and $P_1{\circ}K_1$ by $P_m{\circ}K_1$ and their respective generalized thorn graphs are denoted by $G_P$, $G_K$, $G_B$, $G_{KK}$ and $G_{PK}$ respectively. Many chemical compounds can be treated as $G_P$, $G_K$, $G_B$, $G_{KK}$ and $G_{PK}$ of some graphs in graph theory. In this paper, we obtain the bounds of the wiener index for these generalization of thorn graphs.

Native Cornus kousa Community and Its Habitat in Jeju Island (제주도 산딸나무 군락의 생태적 특성)

  • 안영희;심경구
    • Journal of Environmental Science International
    • /
    • v.12 no.1
    • /
    • pp.15-22
    • /
    • 2003
  • Fifteen major naturally populated habitats around the Mt. Halla, Jeju province for wild Cornus kousa are mostly located on the southeast side of the mountains at 850-1,550m in altitude at sea level and are in half sunney areas. More than 40.0% of the naturally populated area of Cornus kousa are edge of forest areas and 53.3% populate on the steep slope of the mountain in 0-5℃. The direction of the slop for about 40.0% of total populated areas is southeast. In the naturally populated areas, total of 64 taxa dividing into 42 families, 59 genera 56 species and 8 varieties have been shown, mostly Hydrangea petiolaris, Rubus oldhamii, Ilex crenata, Sasa quelpaertensis, Ligustrum obtusifolium. It is suggested that these areas are secondary forest in a typical deciduous forest in Mt. Halla where the second transition had been progressed after forest damage or environmental stress. The index of species diversity of plant groups in these areas is 1.286-4.238 based on the Shannon-Wiener's method.