Saleem, Muhammad;Shah, Syed Muhammad Shehram;Saba, Erum;Pirzada, Nasrullah;Ahmed, Masood
International Journal of Computer Science & Network Security
/
v.22
no.9
/
pp.175-182
/
2022
In our daily life, we come across different types of information, for example in the format of multimedia and text. We all need different types of information for our common routines as watching/reading the news, listening to the radio, and watching different types of videos. However, sometimes we could run into problems when a certain type of information is required. For example, someone is listening to the radio and wants to listen to jazz, and unfortunately, all the radio channels play pop music mixed with advertisements. The listener gets stuck with pop music and gives up searching for jazz. So, the above example can be solved with an automatic audio classification system. Deep Learning (DL) models could make human life easy by using audio classifications, but it is expensive and difficult to deploy such models at edge devices like nano BLE sense raspberry pi, because these models require huge computational power like graphics processing unit (G.P.U), to solve the problem, we proposed DL model. In our proposed work, we had gone for a low complexity model for Audio Event Detection (AED), we extracted Mel-spectrograms of dimension 128×431×1 from audio signals and applied normalization. A total of 3 data augmentation methods were applied as follows: frequency masking, time masking, and mixup. In addition, we designed Convolutional Neural Network (CNN) with spatial dropout, batch normalization, and separable 2D inspired by VGGnet [1]. In addition, we reduced the model size by using model quantization of float16 to the trained model. Experiments were conducted on the updated dataset provided by the Detection and Classification of Acoustic Events and Scenes (DCASE) 2020 challenge. We confirm that our model achieved a val_loss of 0.33 and an accuracy of 90.34% within the 132.50KB model size.
IoT edge services utilizing neuromorphic hardware architectures are suitable for autonomous IoT applications as they perform intelligent processing on the device itself. However, spiking neural networks applied to neuromorphic hardware are difficult for IoT developers to comprehend due to their complex structures and various hyper-parameters. In this paper, we propose a method for generating spiking neural network (SNN) models that satisfy user performance requirements while considering the constraints of neuromorphic hardware. Our proposed method utilizes previously trained models from pre-processed data to find optimal SNN model parameters from profiling data. Comparing our method to a naive search method, both methods satisfy user requirements, but our proposed method shows better performance in terms of runtime. Additionally, even if the constraints of new hardware are not clearly known, the proposed method can provide high scalability by utilizing the profiled data of the hardware.
Kim, Seoyeon;Yun, Young-Sun;Hong, Jiman;Kim, Bongjae;Lee, Keon Myung;Jung, Jinman
Smart Media Journal
/
v.11
no.2
/
pp.70-76
/
2022
IoT application development using a cloud server causes problems such as data transmission and reception delay, network traffic, and cost for real-time processing support in network connected hardware. To solve this problem, edge cloud-based platforms can use neuromorphic hardware to enable fast data transfer. In this paper, we propose a model optimization method for supporting spiking neural networks on FPGA hardware. We focused on auto-adjusting network model parameters optimized for neuromorphic hardware. The proposed method performs optimization to show higher performance based on user requirements for accuracy. As a result of performance analysis, it satisfies all requirements of accuracy and showed higher performance in terms of expected execution time, unlike the naive method supported by the existing open source framework.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.6
/
pp.61-67
/
2023
The rise of 5G and the proliferation of smart devices have underscored the significance of multi-access edge computing (MEC). Amidst this trend, interest in effectively processing computation-intensive and latency-sensitive applications has increased. This study investigated a novel task offloading strategy considering the probabilistic MEC environment to address these challenges. Initially, we considered the frequency of dynamic task requests and the unstable conditions of wireless channels to propose a method for minimizing vehicle power consumption and latency. Subsequently, our research delved into a deep reinforcement learning (DRL) based offloading technique, offering a way to achieve equilibrium between local computation and offloading transmission power. We analyzed the power consumption and queuing latency of vehicles using the deep deterministic policy gradient (DDPG) and deep Q-network (DQN) techniques. Finally, we derived and validated the optimal performance enhancement strategy in a vehicle based MEC environment.
Losses in domestic water supply due to leaks are very large, such as fractures and defects in pipelines. Therefore, preventive measures to prevent water leakage are necessary. We propose the development of a leakage detection sensor utilizing vibration sensors and present an optimal leakage detection algorithm leveraging artificial intelligence. Vibrational sound data acquired from water pipelines undergo a preprocessing stage using FFT (Fast Fourier Transform), followed by leakage classification using an optimized tree-based boosting algorithm. Applying this method to approximately 260,000 experimental data points from various real-world scenarios resulted in a 97% accuracy, a 4% improvement over existing SVM(Support Vector Machine) methods. The processing speed also increased approximately 80 times, confirming its suitability for edge device applications.
This study discusses the long-term deformation monitoring and shape sensing of bridge girder surfaces with an automated extraction scheme for point clouds in the Region Of Interest (ROI), invariant to the position of a Light Detection And Ranging system (LiDAR). Advanced smart construction necessitates continuous monitoring of the deformation and shape of bridge girders during the construction phase. An automated scheme is proposed for reconstructing geometric model of ROI in the presence of noisy non-stationary background. The proposed scheme involves (i) denoising irrelevant background point clouds using dimensions from the design model, (ii) extracting the outer boundaries of the bridge girder by transforming and processing the point cloud data in a two-dimensional image space, (iii) extracting topology of pre-defined targets using the modified Otsu method, (iv) registering the point clouds to a common reference frame or design coordinate using extracted predefined targets placed outside ROI, and (v) defining the bounding box in the point clouds using corresponding dimensional information of the bridge girder and abutments from the design model. The surface-fitted reconstructed geometric model in the ROI is superposed consistently over a long period to monitor bridge shape and derive deflection during the construction phase, which is highly correlated. The proposed scheme of combining 2D-3D with the design model overcomes the sensitivity of 3D point cloud registration to initial match, which often leads to a local extremum.
Journal of the Korea Academia-Industrial cooperation Society
/
v.16
no.3
/
pp.1645-1651
/
2015
This paper describes the changes of shape accuracy in workpiece materials depending on the turning clearance angle. The experiments started from choosing three workpiece materials, SM45C(machine structural carbon steel), STS303(stainless steel) and SCM415 (chrome-molybdenum steel). The experiments showed specifically how features of selected materials changed when they were processed with diverse machining depths, 0.1 mm, 0.2 mm and 0.3 mm, with various negative angles, $0.0^{\circ}(-6.0^{\circ})$, $0.3^{\circ}(-6.3^{\circ})$ and $0.9^{\circ}(-6.9^{\circ})$, and called cutting edge inclination starting from a fixed rotational speed, 2,500 rpm, focusing on the feed rate, 0.07 mm/rev and 0.10 mm/rev. The results of the accuracy of processing, cylindricity, deviation from coaxiality, etc. were compared using the graph and table. The accuracy of cylindricity in the order of degree $0.0^{\circ}{\rightarrow}0.3^{\circ}{\rightarrow}0.9^{\circ}$ depending on the workpiece materials showed the best cylindricity when it was $0.9^{\circ}$. In conclusion, the accuracy improved in specific degrees irrespective of the quality of the materials when the bite negative angles increased. This means that workability improved in these experiments. In addition, the processing shape changed depending on depth of the cut and feed rate.
Journal of the Korean Institute of Telematics and Electronics S
/
v.35S
no.12
/
pp.17-26
/
1998
Ultrasonic sensors are widely used in various applications due to advantages of low cost, simplicity in construction, mechanical robustness, and little environmental restriction in usage. But for the application of object recognition, ultrasonic sensors exhibit several shortcomings of poor directionality which results in low spatial resolution of objects, and specularity which gives frequent erroneous range readings. The time-of-flight(TOF) method generally used for distance measurement can not distinguish small object patterns of plane, corner or edge. To resolve the problem, an increased number of the sensors in the forms of a linear array or 2-dimensional array of the sensors has been used. Also better resolution has been obtained by shifting the array in several steps using mechanical actuators. Also simple patterns are classified based on analyzing signal reflections. In this paper we propose a method of a sensor array system with improved capability in pattern distinction using electronic circuits accompanying the sensor array, and intelligent algorithm based on neuro-fuzzy processing of data fusion. The circuit changes transmitter output voltages of array elements in several steps. A set of different return signals from neighborhood sensors is manipulated to provide enhanced pattern recognition in the aspects of inclination angle, size and shift as well as distance of objects. The results show improved resolution of the measurements for smaller targets.
This paper presents the image contrast enhancement technique suitable for local dimming backlight of small-sized mobile display while achieving the reduction of the power consumption. In addition to the large-sized TFT-LCD, small-sized one has adopted LED for backlight. Since, conventionally, LED was mounted on the side edge of a display panel, global dimming method has been widely used. However, recently, new advanced method of local dimming by placing the LED to the backside of the display panel and it raised the necessity of sub-blocked processing after partitioning the target image. When the sub-blocked image has low brightness, the supply current of a backlight LED is reduced, which gives both enhancement of contrast ratio and power consumption reduction. In this paper, we propose simple and improved image enhancement algorithm suitable for the small-sized mobile display. After partitioning the input image by equal sized blocks and analyzing the pixel information in each block, we realize the primary contrast enhancement by independently processing the sub-blocks using the information such as histogram, mean, and standard deviation values of luminance(Y) component. And then resulting information is transferred to each backlight control unit for local dimming to realize the secondary contrast enhancement as well as reduction of power consumption.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.45
no.3
/
pp.12-19
/
2008
Detection of a number plate consists of three stages; division of a number plate, extraction of each character from the plate, recognition of the characters. Among of these three states, division stage of a number plate is the most important part and also the most time-consuming state. This paper suggests an effective region extraction method of a number plate for various images obtained from unmanned inspection systems of illegal parking violation, especially when we have to consider the diverse surrounding environments of roads. Our approaching method detects each region by investigating the characteristics in changes of brightness and intensity between the background part and character part, and the characteristics on character parts such as the sizes, heights, widths, and distance in between two characters. The method also divides a number plate into different types of the plate. This research can solve the number plate region detection failure problems caused by plate edge damages not only for Korean domestic number plates but also for new European style number plates. The method also reduces the time consumption by processing the detection in real-time, therefore, it can be used as a practical solution.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.