• Title/Summary/Keyword: edge location detection

Search Result 75, Processing Time 0.025 seconds

Real Time On-Road Vehicle Detection with Low-Level Visual Features and Boosted Cascade of Haar-Like Features (미약한 시각 특징과 Haar 유사 특징들의 강화 연결에 의한 도로 상의 실 시간 차량 검출)

  • Adhikari, Shyam Prasad;Yoo, Hyeon-Joong;Kim, Hyong-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.17-21
    • /
    • 2011
  • This paper presents a real- time detection of on-road succeeding vehicles based on low level edge features and a boosted cascade of Haar-like features. At first, the candidate vehicle location in an image is found by low level horizontal edge and symmetry characteristic of vehicle. Then a boosted cascade of the Haar-like features is applied to the initial hypothesized vehicle location to extract the refined vehicle location. The initial hypothesis generation using simple edge features speeds up the whole detection process and the application of a trained cascade on the hypothesized location increases the accuracy of the detection process. Experimental results on real world road scenario with processing speed of up to 27 frames per second for $720{\times}480$ pixel images are presented.

A Study on Algorithm of Edge Detection in Mixed Noise Environments (복합잡음 환경에서 에지 검출에 관한 알고리즘에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.100-103
    • /
    • 2014
  • Currently, edge detection is utilized in various areas. Edge detection is the preprocessing process for image processing in general, and this is a technology that is considered essential for image processing. According, research on this subject is carried out incessantly. Edge has important image related elements such as size, direction and location of the object of an image. Numerous methods were proposed for the detection. Among them, the representative methods are Sobel, Prewitt, Roberts, Laplacian. However, these existing methods are rather lacking when it comes to the edge detection characteristics in case of the image with mixed noise. Therefore, this study presented edge detection method that utilizes median and average values for the elements depending on the size and location of local mask.

  • PDF

Window Configurations Comparison Based on Statistical Edge Detection in Images (영상에서 윈도우 배치에 따른 통계적 에지검출 비교)

  • Lim, Dong-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.4
    • /
    • pp.615-625
    • /
    • 2009
  • In this paper we describe Wilcoxon test and T-test that are well-known in two-sample location problem for detecting edges under different window configurations. The choice of window configurations is an important factor in determining the performance and the expense of edge detectors. Our edge detectors are based on testing the mean values of local neighborhoods obtained under the edge model using an edge-height parameter. We compare three window configurations based on statistical tests in terms of qualitative measures with the edge maps and objective, quantitative measures as well as CPU time for detecting edge.

Edge Map-Based Fingerprint Reference-Point Detection (에지맵 기반 지문 기준점 검출)

  • Song, Young-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1321-1323
    • /
    • 2007
  • A new reference point location method based on an edge map is proposed, where an orientation map is defined and used to find the edge map. Experimental results show that the proposed method can effectively detect the core point in poor quality and arch-type fingerprint images and produces better results in terms of the detection rate and accuracy than the sine map-based method.

A Study on Edge Detection Algorithm using Standard Deviation of Local Mask (국부 마스크의 표준편차를 이용한 에지 검출 알고리즘에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.328-330
    • /
    • 2015
  • Edge is a characteristic information that can easily obtain the size, direction and location of objects included in the image, and the edge detection is utilized as a preprocess processing in various image processing application sectors such as object detection and object recognition, etc. For the conventional edge detection methods, there are Sobel, Prewitt and Roberts. These existing edge detection methods are easy to implement but the edge detection characteristics are somewhat insufficient as fixed weighted mask is applied. Therefore, in order to compensate the problems of existing edge detection methods, in this paper, an edge detection algorithm was proposed after applying the weighted value according to the standard deviation and means within the local mask.

  • PDF

A Study on Edge Detection using Weighted Value with Threshold (임계값에 따른 가중치를 이용한 에지 검출에 관한 연구)

  • Lee, Chang-Young;Hwang, Yeong-Yeun;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.886-888
    • /
    • 2013
  • An edge includes information of objects such as magnitude, orientation, and location. Conventional edge detection methods to detect those edge are methods using Sobel, Prewitt, Roberts, Laplacian operator. Existing methods use fixed weighted mask to detect edges, and their edge detection characteristics are insufficient. Therefore, to remedy weakness of conventional methods, in this paper, an edge detection algorithm using weight with standard deviation and thresholds is proposed.

  • PDF

The Detection of Rectangular Shape Objects Using Matching Schema

  • Ye, Soo-Young;Choi, Joon-Young;Nam, Ki-Gon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.363-368
    • /
    • 2016
  • Rectangular shape detection plays an important role in many image recognition systems. However, it requires continued research for its improved performance. In this study, we propose a strong rectangular shape detection algorithm, which combines the canny edge and line detection algorithms based on the perpendicularity and parallelism of a rectangle. First, we use the canny edge detection algorithm in order to obtain an image edge map. We then find the edge of the contour by using the connected component and find each edge contour from the edge map by using a DP (douglas-peucker) algorithm, and convert the contour into a polyline segment by using a DP algorithm. Each of the segments is compared with each other to calculate parallelism, whether or not the segment intersects the perpendicularity intersecting corner necessary to detect the rectangular shape. Using the perpendicularity and the parallelism, the four best line segments are selected and whether a determined the rectangular shape about the combination. According to the result of the experiment, the proposed rectangular shape detection algorithm strongly showed the size, location, direction, and color of the various objects. In addition, the proposed algorithm is applied to the license plate detecting and it wants to show the strength of the results.

Linear Feature Detection of Rectangular Object Area using Edge Tracing-based Algorithm (에지 트레이싱 기법을 이용한 사각형 물체의 선형 특징점 검출)

  • 오중원;한희일
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2092-2095
    • /
    • 2003
  • In this paper, we propose an algorithm to extract rectangular object area such 3s Data Matrix two-dimensional barcode using edge tracing-based linear feature detection. Hough transform is usually employed to detect lines of edge map. However, it requires parametric image space, and does not find the location of end points of the detected lines. Our algorithm detects end points of the detected lines using edge tracing and extracts object area using its shape information.

  • PDF

Optical Flow Measurement Based on Boolean Edge Detection and Hough Transform

  • Chang, Min-Hyuk;Kim, Il-Jung;Park, Jong an
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.119-126
    • /
    • 2003
  • The problem of tracking moving objects in a video stream is discussed in this pa-per. We discussed the popular technique of optical flow for moving object detection. Optical flow finds the velocity vectors at each pixel in the entire video scene. However, optical flow based methods require complex computations and are sensitive to noise. In this paper, we proposed a new method based on the Hough transform and on voting accumulation for improving the accuracy and reducing the computation time. Further, we applied the Boo-lean based edge detector for edge detection. Edge detection and segmentation are used to extract the moving objects in the image sequences and reduce the computation time of the CHT. The Boolean based edge detector provides accurate and very thin edges. The difference of the two edge maps with thin edges gives better localization of moving objects. The simulation results show that the proposed method improves the accuracy of finding the optical flow vectors and more accurately extracts moving objects' information. The process of edge detection and segmentation accurately find the location and areas of the real moving objects, and hence extracting moving information is very easy and accurate. The Combinatorial Hough Transform and voting accumulation based optical flow measures optical flow vectors accurately. The direction of moving objects is also accurately measured.

Edge Detection using Genetic Algorithm (유전자 알고리즘을 이용한 윤곽선 추출)

  • 박찬란;이웅기
    • Journal of the Korea Society of Computer and Information
    • /
    • v.3 no.2
    • /
    • pp.85-97
    • /
    • 1998
  • The existing edge detection methods can not represent the real edge of object at fitting point or detect the edge which has unsufficient connecting trait. Especially, the two-fold thick edge detected by these methods cannot coincide real boundary of subject and it's location. To overcome these problems, we introduce the Genetic Algorithm(GA) in edge detection. The energy function is the value of fixel's satisfaction degree to edge condition. And it consists of the fitness value to image formation type, fitness value to connecting trait to it's neighboring edge and evalulation function which can represents the edge at fitting point as one fixel. This method is superior to remove the noise in edge detection than the existing methods. And it also detects the clear and exact edge because it can find the one fixel which is located at fitting point and has strong connecting trait.

  • PDF