• Title/Summary/Keyword: edge decision

Search Result 152, Processing Time 0.032 seconds

Application of Deep Learning: A Review for Firefighting

  • Shaikh, Muhammad Khalid
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.73-78
    • /
    • 2022
  • The aim of this paper is to investigate the prevalence of Deep Learning in the literature on Fire & Rescue Service. It is found that deep learning techniques are only beginning to benefit the firefighters. The popular areas where deep learning techniques are making an impact are situational awareness, decision making, mental stress, injuries, well-being of the firefighter such as his sudden fall, inability to move and breathlessness, path planning by the firefighters while getting to an fire scene, wayfinding, tracking firefighters, firefighter physical fitness, employment, prediction of firefighter intervention, firefighter operations such as object recognition in smoky areas, firefighter efficacy, smart firefighting using edge computing, firefighting in teams, and firefighter clothing and safety. The techniques that were found applied in firefighting were Deep learning, Traditional K-Means clustering with engineered time and frequency domain features, Convolutional autoencoders, Long Short-Term Memory (LSTM), Deep Neural Networks, Simulation, VR, ANN, Deep Q Learning, Deep learning based on conditional generative adversarial networks, Decision Trees, Kalman Filters, Computational models, Partial Least Squares, Logistic Regression, Random Forest, Edge computing, C5 Decision Tree, Restricted Boltzmann Machine, Reinforcement Learning, and Recurrent LSTM. The literature review is centered on Firefighters/firemen not involved in wildland fires. The focus was also not on the fire itself. It must also be noted that several deep learning techniques such as CNN were mostly used in fire behavior, fire imaging and identification as well. Those papers that deal with fire behavior were also not part of this literature review.

Two Uncertain Programming Models for Inverse Minimum Spanning Tree Problem

  • Zhang, Xiang;Wang, Qina;Zhou, Jian
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • An inverse minimum spanning tree problem makes the least modification on the edge weights such that a predetermined spanning tree is a minimum spanning tree with respect to the new edge weights. In this paper, the concept of uncertain ${\alpha}$-minimum spanning tree is initiated for minimum spanning tree problem with uncertain edge weights. Using different decision criteria, two uncertain programming models are presented to formulate a specific inverse minimum spanning tree problem with uncertain edge weights involving a sum-type model and a minimax-type model. By means of the operational law of independent uncertain variables, the two uncertain programming models are transformed to their equivalent deterministic models which can be solved by classic optimization methods. Finally, some numerical examples on a traffic network reconstruction problem are put forward to illustrate the effectiveness of the proposed models.

A Fuzzy Neural-Network Algorithm for Noisiness Recognition of Road Images (도로영상의 잡음도 식별을 위한 퍼지신경망 알고리즘)

  • 이준웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.147-159
    • /
    • 2002
  • This paper proposes a method to recognize the noisiness of road images connected with the extraction of lane-related information in order to prevent the usage of erroneous information. The proposed method uses a fuzzy neural network(FNN) with the back-Propagation loaming algorithm. The U decides road images good or bad with respect to visibility of lane marks on road images. Most input parameters to the FNN are extracted from an edge distribution function(EDF), a function of edge histogram constructed by edge phase and norm. The shape of the EDF is deeply correlated to the visibility of lane marks of road image. Experimental results obtained by simulations with real images taken by various lighting and weather conditions show that the proposed method was quite successful, providing decision-making of noisiness with about 99%.

Dynamic Computation Offloading Based on Q-Learning for UAV-Based Mobile Edge Computing

  • Shreya Khisa;Sangman Moh
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.68-76
    • /
    • 2023
  • Emerging mobile edge computing (MEC) can be used in battery-constrained Internet of things (IoT). The execution latency of IoT applications can be improved by offloading computation-intensive tasks to an MEC server. Recently, the popularity of unmanned aerial vehicles (UAVs) has increased rapidly, and UAV-based MEC systems are receiving considerable attention. In this paper, we propose a dynamic computation offloading paradigm for UAV-based MEC systems, in which a UAV flies over an urban environment and provides edge services to IoT devices on the ground. Since most IoT devices are energy-constrained, we formulate our problem as a Markov decision process considering the energy level of the battery of each IoT device. We also use model-free Q-learning for time-critical tasks to maximize the system utility. According to our performance study, the proposed scheme can achieve desirable convergence properties and make intelligent offloading decisions.

Adaptive Watermark Detection Algorithm Using Perceptual Model and Statistical Decision Method Based on Multiwavelet Transform

  • Hwang Eui-Chang;Kim Dong Kyue;Moon Kwang-Seok;Kwon Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.6
    • /
    • pp.783-789
    • /
    • 2005
  • This paper is proposed a watermarking technique for copyright protection of multimedia contents. We proposed adaptive watermark detection algorithm using stochastic perceptual model and statistical decision method in DMWT(discrete multi wavelet transform) domain. The stochastic perceptual model calculates NVF(noise visibility function) based on statistical characteristic in the DMWT. Watermark detection algorithm used the likelihood ratio depend on Bayes' decision theory by reliable detection measure and Neyman-Pearson criterion. To reduce visual artifact of image, in this paper, adaptively decide the embedding number of watermark based on DMWT, and then the watermark embedding strength differently at edge and texture region and flat region embedded when watermark embedding minimize distortion of image. In experiment results, the proposed statistical decision method based on multiwavelet domain could decide watermark detection.

  • PDF

Modified Watershed Algorithm Considering Zero-Crossing of Gradient (Gradient의 Zero-Crossing을 이용한 개선된 Watershed Algorithm)

  • Park, Dong-In;Ko, Yun-Ho;Park, Young-Woo
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.389-390
    • /
    • 2007
  • In this paper, we propose a modified watershed algorithm to obtain exact edge of region. The proposed method adjusts priority at zero-crossing point of gradient in order to make the point of region decision time postponed. We compare the proposed method with a previous method and prove that this method can extract more correct edge of region.

  • PDF

Intra MB Prediction Mode Decision Method for Fast MPEG-2 to H.264/AVC Transcoding (고속 MPEG-2-H.264/AVC 변 환부호화를 위한 화면내 MB 예측 모드 결정 기법)

  • Liu, Xingang;Yoo, Kook-Yeol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12C
    • /
    • pp.1046-1054
    • /
    • 2008
  • Since the high quality digital TV systems are broadly deployed in the market, the digital video contents will be edited and distributed in MPEG-2 MP@HL fonnat. Due to its impressive coding efficiency, the H.264/AVC codec has rapidly replaced the MPEG-4 SP codec for mobile digital video terminal with low quality. For the bro ad distribution of digitial video contents produced in MPEG-2 format, the MPEG-2 to H.264/AVC transcoding is highly necessary nowadays. In this paper, we propose a fast intra MB prediction mode decision method to reduce the computational complexity in the transcoding, which is the main bottleneck in the transcoders. The proposed method is based on the several relationships such as DCT coefficients and edge orientation, correlation between prediction directions in the $Intra16{\times}16$ and $Intra4{\times}4$ modes, correlation between edge-orientations of luminance an d chrominance components. The simulation results show that the proposed method can reduce the computational complexity upto 70% and 40%, compared with the cascaded transcoder and the well-known fast intraframe transc oder, respectively.

A Study on Finding Emergency Conditions for Automatic Authentication Applying Big Data Processing and AI Mechanism on Medical Information Platform

  • Ham, Gyu-Sung;Kang, Mingoo;Joo, Su-Chong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2772-2786
    • /
    • 2022
  • We had researched an automatic authentication-supported medical information platform[6]. The proposed automatic authentication consists of user authentication and mobile terminal authentication, and the authentications are performed simultaneously in patients' emergency conditions. In this paper, we studied on finding emergency conditions for the automatic authentication by applying big data processing and AI mechanism on the extended medical information platform with an added edge computing system. We used big data processing, SVM, and 1-Dimension CNN of AI mechanism to find emergency conditions as authentication means considering patients' underlying diseases such as hypertension, diabetes mellitus, and arrhythmia. To quickly determine a patient's emergency conditions, we placed edge computing at the end of the platform. The medical information server derives patients' emergency conditions decision values using big data processing and AI mechanism and transmits the values to an edge node. If the edge node determines the patient emergency conditions, the edge node notifies the emergency conditions to the medical information server. The medical server transmits an emergency message to the patient's charge medical staff. The medical staff performs the automatic authentication using a mobile terminal. After the automatic authentication is completed, the medical staff can access the patient's upper medical information that was not seen in the normal condition.

Parking Lot Occupancy Detection using Deep Learning and Fisheye Camera for AIoT System

  • To Xuan Dung;Seongwon Cho
    • Smart Media Journal
    • /
    • v.13 no.1
    • /
    • pp.24-35
    • /
    • 2024
  • The combination of Artificial Intelligence and the Internet of Things (AIoT) has gained significant popularity. Deep neural networks (DNNs) have demonstrated remarkable success in various applications. However, deploying complex AI models on embedded boards can pose challenges due to computational limitations and model complexity. This paper presents an AIoT-based system for smart parking lots using edge devices. Our approach involves developing a detection model and a decision tree for occupancy status classification. Specifically, we utilize YOLOv5 for car license plate (LP) detection by verifying the position of the license plate within the parking space.

A Scene-Specific Object Detection System Utilizing the Advantages of Fixed-Location Cameras

  • Jin Ho Lee;In Su Kim;Hector Acosta;Hyeong Bok Kim;Seung Won Lee;Soon Ki Jung
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.329-336
    • /
    • 2023
  • This paper introduces an edge AI-based scene-specific object detection system for long-term traffic management, focusing on analyzing congestion and movement via cameras. It aims to balance fast processing and accuracy in traffic flow data analysis using edge computing. We adapt the YOLOv5 model, with four heads, to a scene-specific model that utilizes the fixed camera's scene-specific properties. This model selectively detects objects based on scale by blocking nodes, ensuring only objects of certain sizes are identified. A decision module then selects the most suitable object detector for each scene, enhancing inference speed without significant accuracy loss, as demonstrated in our experiments.