• Title/Summary/Keyword: edge connectivity

Search Result 75, Processing Time 0.024 seconds

Histogram-based road border line extractor for road extraction from satellite imagery (위성영상에서 도로 추출을 위한 히스토그램 기반 경계선 추출자)

  • Lee, Dong-Hoon;Kim, Jong-Hwa;Choi, Heung-Moon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.28-34
    • /
    • 2007
  • A histogram-based road border line extractor is proposed for an efficient road extraction from the high-resolution satellite imagery. The road border lines are extracted from an edge strength map based on the directional histogram difference between the road and the non-road region. The straight and the curved roads are extracted hierarchically from the edge strength map of the original image and the segmented road cluster images, and the road network is constructed based on the connectivity. Unlike the conventional approaches based on the spectral similarity, the proposed road extraction method is more robust to noise because it extracts roads based on the histogram, and is able to extract both the location and the width of roads. In addition, the proposed method can extract roads with various spectral characteristics by identifying the road clusters automatically. Experimental results on IKONOS multi-spectral satellite imagery with high spatial resolution show that the proposed method can extract the straight and the curved roads as well as the accurate road border lines.

Implementation of Mission Service Model and Development Tool for Effective Mission Operation in Military Environment (전장공간의 효율적 임무수행을 위한 임무서비스 모델 및 개발도구 구현)

  • Song, Seheon;Byun, Kohun;Lee, Sangil;Park, JaeHyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.6
    • /
    • pp.285-292
    • /
    • 2017
  • There are technological, operational and environmental constraints at tactical edge, which are disconnected operation, intermittent connectivity, and limited bandwidth (DIL), size, weight and power (SWaP) limitations, ad-hoc and mobile network, and so on. To overcome these limitations and constraints, we use service-oriented architecture (SOA) based technologies. In our research, we propose a hierarchical mission service model that supports service-oriented mission planning and execution in order for a commander to operate various SW required for mission in battlefield environment. We will also implement development tools that utilize the workflow technology and semantic capability-based recommendation and apply them to combat mission scenarios to demonstrate effectiveness.

An Implementation of $5\times{5}$ CNN Hardware and Pre.Post Processor ($5\times{5}$ CNN 하드웨어 및 전.후 처리기 구현)

  • 김승수;정금섭;전흥우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.416-419
    • /
    • 2003
  • The cellular neural networks have the circuit structure that differs from the form of general neural network. It consists of an array of the same cell which is a simple processing element, and each of the cells has local connectivity and space invariant template property. In this paper, time-multiplex image processing technique is applied for processing large images using small size CNN cell block, and we simulate the edge detection of a large image using the simulator implemented with a c program and matlab model. A 5$\times$5 CNN hardware and pre post processor is also implemented and is under test.

  • PDF

An Arrangement Technique for Fine Regular Triangle Grid of Network Dome by Using Harmony Search Algorithm (화음탐색 알고리즘을 이용한 네트워크 돔의 정삼각형 격자 조절기법)

  • Shon, Su-Deok;Jo, Hye-Won;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.87-94
    • /
    • 2015
  • This paper aimed at modeling a fine triangular grid for network dome by using Harmony Search (HS) algorithm. For this purpose, an optimization process to find a fine regular triangular mesh on the curved surface was proposed and the analysis program was developed. An objective function was consist of areas and edge's length of each triangular and its standard deviations, and design variables were subject to the upper and lower boundary which was calculated on the nodal connectivity. Triangular network dome model, which was initially consist of randomly irregular triangular mesh, was selected for the target example and the numerical result was analyzed in accordance with the HS parameters. From the analysis results of adopted model, the fitness function has been converged and the optimized triangular grid could be obtained from the initially distorted network dome example.

Localization Method in Wireless Sensor Networks using Fuzzy Modeling and Genetic Algorithm (퍼지 모델링과 유전자 알고리즘을 이용한 무선 센서 네트워크에서 위치추정)

  • Yun, Suk-Hyun;Lee, Jae-Hun;Chung, Woo-Yong;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.530-536
    • /
    • 2008
  • Localization is one of the fundamental problems in wireless sensor networks (WSNs) that forms the basis for many location-aware applications. Localization in WSNs is to determine the position of node based on the known positions of several nodes. Most of previous localization method use triangulation or multilateration based on the angle of arrival (AOA) or distance measurements. In this paper, we propose an enhanced centroid localization method based on edge weights of adjacent nodes using fuzzy modeling and genetic algorithm when node connectivities are known. The simulation results shows that our proposed centroid method is more accurate than the simple centroid method using connectivity only.

A Design of a Cellular Neural Network for the Real Image Processing (실영상처리를 위한 셀룰러 신경망 설계)

  • Kim Seung-Soo;Jeon Heung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.283-290
    • /
    • 2006
  • The cellular neural networks have the structure that consists of an array of the same cell which is a simple processing element, and each of the cells has local connectivity and space invariant template properties. So, it has a very suitable structure for the hardware implementation. But, it is impossible to have a one-to-one mapping between the CNN hardware processors and the pixels of the practical large image. In this paper, a $5{\times}5$ CNN hardware processor with pipeline input and output that can be applied to the time-multiplexing processing scheme, which processes the large image with a small CNN cell block, is designed. the operation of the implemented $5{\times}5$ CNN hardware processor is verified from the edge detection and the shadow detection experimentations.

Feature based Text Watermarking for Binary Document Image (이진 문서 영상을 위한 특징 기반 텍스트 워터마킹)

  • Choo Hyon-Gon;Kim Whoi-yul
    • The KIPS Transactions:PartB
    • /
    • v.12B no.2 s.98
    • /
    • pp.151-156
    • /
    • 2005
  • In this paper, we propose feature based character watermarking methods based on geometical features specific to characters of text in document image. The proposed methods can satisfy both data capacity and robustness simultaneously while none of the conventional methods can. According to the characteristics of characters, watermark can be embed or detected through changes of connectivity of the characters, differences of characteristics of edge pixels or changes of area of holes. Experimental results show that our identification techniques are very robust to distortion and have high data capacity.

Modulation Recognition of BPSK/QPSK Signals based on Features in the Graph Domain

  • Yang, Li;Hu, Guobing;Xu, Xiaoyang;Zhao, Pinjiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3761-3779
    • /
    • 2022
  • The performance of existing recognition algorithms for binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) signals degrade under conditions of low signal-to-noise ratios (SNR). Hence, a novel recognition algorithm based on features in the graph domain is proposed in this study. First, the power spectrum of the squared candidate signal is truncated by a rectangular window. Thereafter, the graph representation of the truncated spectrum is obtained via normalization, quantization, and edge construction. Based on the analysis of the connectivity difference of the graphs under different hypotheses, the sum of degree (SD) of the graphs is utilized as a discriminate feature to classify BPSK and QPSK signals. Moreover, we prove that the SD is a Schur-concave function with respect to the probability vector of the vertices (PVV). Extensive simulations confirm the effectiveness of the proposed algorithm, and its superiority to the listed model-driven-based (MDB) algorithms in terms of recognition performance under low SNRs and computational complexity. As it is confirmed that the proposed method reduces the computational complexity of existing graph-based algorithms, it can be applied in modulation recognition of radar or communication signals in real-time processing, and does not require any prior knowledge about the training sets, channel coefficients, or noise power.

Deep Neural Network-Based Critical Packet Inspection for Improving Traffic Steering in Software-Defined IoT

  • Tam, Prohim;Math, Sa;Kim, Seokhoon
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.1-8
    • /
    • 2021
  • With the rapid growth of intelligent devices and communication technologies, 5G network environment has become more heterogeneous and complex in terms of service management and orchestration. 5G architecture requires supportive technologies to handle the existing challenges for improving the Quality of Service (QoS) and the Quality of Experience (QoE) performances. Among many challenges, traffic steering is one of the key elements which requires critically developing an optimal solution for smart guidance, control, and reliable system. Mobile edge computing (MEC), software-defined networking (SDN), network functions virtualization (NFV), and deep learning (DL) play essential roles to complementary develop a flexible computation and extensible flow rules management in this potential aspect. In this proposed system, an accurate flow recommendation, a centralized control, and a reliable distributed connectivity based on the inspection of packet condition are provided. With the system deployment, the packet is classified separately and recommended to request from the optimal destination with matched preferences and conditions. To evaluate the proposed scheme outperformance, a network simulator software was used to conduct and capture the end-to-end QoS performance metrics. SDN flow rules installation was experimented to illustrate the post control function corresponding to DL-based output. The intelligent steering for network communication traffic is cooperatively configured in SDN controller and NFV-orchestrator to lead a variety of beneficial factors for improving massive real-time Internet of Things (IoT) performance.

Hybrid Offloading Technique Based on Auction Theory and Reinforcement Learning in MEC Industrial IoT Environment (MEC 산업용 IoT 환경에서 경매 이론과 강화 학습 기반의 하이브리드 오프로딩 기법)

  • Bae Hyeon Ji;Kim Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.9
    • /
    • pp.263-272
    • /
    • 2023
  • Industrial Internet of Things (IIoT) is an important factor in increasing production efficiency in industrial sectors, along with data collection, exchange and analysis through large-scale connectivity. However, as traffic increases explosively due to the recent spread of IIoT, an allocation method that can efficiently process traffic is required. In this thesis, I propose a two-stage task offloading decision method to increase successful task throughput in an IIoT environment. In addition, I consider a hybrid offloading system that can offload compute-intensive tasks to a mobile edge computing server via a cellular link or to a nearby IIoT device via a Device to Device (D2D) link. The first stage is to design an incentive mechanism to prevent devices participating in task offloading from acting selfishly and giving difficulties in improving task throughput. Among the mechanism design, McAfee's mechanism is used to control the selfish behavior of the devices that process the task and to increase the overall system throughput. After that, in stage 2, I propose a multi-armed bandit (MAB)-based task offloading decision method in a non-stationary environment by considering the irregular movement of the IIoT device. Experimental results show that the proposed method can obtain better performance in terms of overall system throughput, communication failure rate and regret compared to other existing methods.