• Title/Summary/Keyword: edge cloud

Search Result 203, Processing Time 0.026 seconds

A Study on the Availability of Surplus Computing Resources in Edge Cloud Environment (엣지 클라우드 환경 잉여 컴퓨팅 자원의 활용을 위한 가용성 확보 방법 연구)

  • Kim, Dong-Wan;Shin, Yong-Tae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.637-640
    • /
    • 2022
  • 최근 빅데이터 및 인공지능의 중요성이 커짐에 따라 클라우드 시스템을 효율적으로 설계하고 관리하기 위한 연구가 활발히 진행 중이다. 본 논문은 기술 발전으로 각 개인은 고성능의 컴퓨팅 자원을 소유하고 있지만, 이 자원이 대부분 잉여 자원으로써 낭비되고 있다는 점을 착안하여, 잉여 컴퓨팅 자원을 효율적으로 활용하기 위해 엣지 클라우드 환경에서 분산된 자원의 가용성을 확보하기 위한 방법을 제안한다.

  • PDF

A Study of Virtual IoT System using Edge Computing (엣지 컴퓨팅 기반 가상 IoT 시스템 연구)

  • Kim, Min-A;Seok, Seung-Joon
    • KNOM Review
    • /
    • v.23 no.1
    • /
    • pp.51-62
    • /
    • 2020
  • Open IoT platform that shares communication infrastructure and provides cloud resources can flexibly reduce development period and cost of smart service. In this paper, as an open IoT platform, we propose a virtual IoT system based on edge computing that implements a virtual IoT device for a physical IoT device and allows service developers to interact with the virtual device. A management server in the edge cloud, near the IoT physical device, manages the creation, movement, and removal of virtual IoT devices corresponding to the physical IoT devices. This paper define the operations of the management server, the physical IoT device, and the virtual IoT device, which are major components of the virtual IoT system, and design the communication protocol required to perform the operations. Finally, through simulations, this paper evaluate the performance of the edge computing based virtual IoT system by confirming that each component performs the defined states and operations as designed.

Performance Comparison and Optimal Selection of Computing Techniques for Corridor Surveillance (회랑감시를 위한 컴퓨팅 기법의 성능 비교와 최적 선택 연구)

  • Gyeong-rae Jo;Seok-min Hong;Won-hyuck Choi
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.770-775
    • /
    • 2023
  • Recently, as the amount of digital data increases exponentially, the importance of data processing systems is being emphasized. In this situation, the selection and construction of data processing systems are becoming more important. In this study, the performance of cloud computing (CC), edge computing (EC), and UAV-based intelligent edge computing (UEC) was compared as a way to solve this problem. The characteristics, strengths, and weaknesses of each method were analyzed. In particular, this study focused on real-time large-capacity data processing situations such as corridor monitoring. When conducting the experiment, a specific scenario was assumed and a penalty was given to the infrastructure. In this way, it was possible to evaluate performance in real situations more accurately. In addition, the effectiveness and limitations of each computing method were more clearly understood, and through this, the help was provided to enable more effective system selection.

A Platform Providing Interactive Signage Based on Edge-cloud Cooperation (엣지-클라우드 협업 기반 인터랙티브 사이니지 제공 플랫폼)

  • Moon, Jaewon;Kum, Seungwoo;Lee, Sangwon
    • Journal of Internet Computing and Services
    • /
    • v.20 no.2
    • /
    • pp.39-49
    • /
    • 2019
  • Advances in IoT data analysis technology have made it easier to analyze situation and provide interactive services based on the context. Most of digital signage application have been used to provide information uni-directionally, but in the future it will evolve to provide personalized content according to the individual user situation and responses. However, it is not easy to modify or apply the existing interactive digital signage platforms due to their hardware dependency. The proposed platform is modularized by dividing main functions into two, the cloud and the edge, so that advertisement resources can be easily generated and registered. Thus, interactive advertisement can be rendered in a timely manner based on sensor analysis results. At the edge, personal data can be processed to minimize privacy issues, and real-time IoT sensor data can be analyzed for quick response to the signage player. The cloud is easier to access and manage by multiple users than edge. Therefore, the signage content generation module improves accessibility and flexibility by handling advertisement contents in the cloud so that multiple users can work together on the cloud platform. The proposed platform was developed and simulated in two aspects. First is the provider who provides the signage service, and second is the viewer who uses the content of the signage. Simulation results show that the proposed platform enables providers to quickly construct interactive signage contents and responses appropriately to the context changes in real-time.

Multi-cloud Technology Introduction and Research Trends (멀티 클라우드 기술 개요 및 연구 동향)

  • Kim, B.S.;Jung, Y.W.;Oh, B.T.;Kim, S.Y.;Son, S.;Seo, J.H.;Bae, S.J.;Lee, G.C.;Kang, D.J.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.3
    • /
    • pp.45-54
    • /
    • 2020
  • The cloud computing industry has focused on establishing a cloud-based business environment for enterprises with efforts to convert using their own on-premise computing infrastructures to using cloud services. With these efforts, using cloud services has become natural, especially for the IT industry. The cloud computing industry is moving toward proliferation of the cloud computing environment into various evolving industries. Along with industrial trends, new technical trends such as edge computing and multi-cloud are emerging. These trends are expected to create new business models and develop related service ecosystems, providing new opportunities for service providers and new experiences for users. A mong those emerging technologies, multi-cloud technology is expected to realize unlimited global cloud computing resources by unifying cloud resources from multiple public cloud service providers. In this paper, we introduce the concept and related trends of multi-cloud technology. Subsequently, we analyze the main functionalities and several use cases of multi-cloud technology. Finally, we summarize the effects and usefulness of multi-cloud technology in the domestic cloud industry.

A Four-Layer Robust Storage in Cloud using Privacy Preserving Technique with Reliable Computational Intelligence in Fog-Edge

  • Nirmala, E.;Muthurajkumar, S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3870-3884
    • /
    • 2020
  • The proposed framework of Four Layer Robust Storage in Cloud (FLRSC) architecture involves host server, local host and edge devices in addition to Virtual Machine Monitoring (VMM). The goal is to protect the privacy of stored data at edge devices. The computational intelligence (CI) part of our algorithm distributes blocks of data to three different layers by partially encoded and forwarded for decoding to the next layer using hash and greed Solomon algorithms. VMM monitoring uses snapshot algorithm to detect intrusion. The proposed system is compared with Tiang Wang method to validate efficiency of data transfer with security. Hence, security is proven against the indexed efficiency. It is an important study to integrate communication between local host software and nearer edge devices through different channels by verifying snapshot using lamport mechanism to ensure integrity and security at software level thereby reducing the latency. It also provides thorough knowledge and understanding about data communication at software level with VMM. The performance evaluation and feasibility study of security in FLRSC against three-layered approach is proven over 232 blocks of data with 98% accuracy. Practical implications and contributions to the growing knowledge base are highlighted along with directions for further research.

Design of Personalized Exercise Data Collection System based on Edge Computing

  • Jung, Hyon-Chel;Choi, Duk-Kyu;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.5
    • /
    • pp.61-68
    • /
    • 2021
  • In this paper, we propose an edge computing-based exercise data collection device that can be provided for exercise rehabilitation services. In the existing cloud computing method, when the number of users increases, the throughput of the data center increases, causing a lot of delay. In this paper, we design and implement a device that measures and estimates the position of keypoints of body joints for movement information collected by a 3D camera from the user's side using edge computing and transmits them to the server. This can build a seamless information collection environment without load on the cloud system. The results of this study can be utilized in a personalized rehabilitation exercise coaching system through IoT and edge computing technologies for various users who want exercise rehabilitation.

Important Facility Guard System Using Edge Computing for LiDAR (LiDAR용 엣지 컴퓨팅을 활용한 중요시설 경계 시스템)

  • Jo, Eun-Kyung;Lee, Eun-Seok;Shin, Byeong-Seok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.345-352
    • /
    • 2022
  • Recent LiDAR(Light Detection And Ranging) sensor is used for scanning object around in real-time. This sensor can detect movement of the object and how it has changed. As the production cost of the sensors has been decreased, LiDAR begins to be used for various industries such as facility guard, smart city and self-driving car. However, LiDAR has a large input data size due to its real-time scanning process. So another way for processing a large amount of data are needed in LiDAR system because it can cause a bottleneck. This paper proposes edge computing to compress massive point cloud for processing quickly. Since laser's reflection range of LiDAR sensor is limited, multiple LiDAR should be used to scan a large area. In this reason multiple LiDAR sensor's data should be processed at once to detect or recognize object in real-time. Edge computer compress point cloud efficiently to accelerate data processing and decompress every data in the main cloud in real-time. In this way user can control LiDAR sensor in the main system without any bottleneck. The system we suggest solves the bottleneck which was problem on the cloud based method by applying edge computing service.

The Design of Smart Factory System using AI Edge Device (AI 엣지 디바이스를 이용한 스마트 팩토리 시스템 설계)

  • Han, Seong-Il;Lee, Dae-Sik;Han, Ji-Hwan;Shin, Han Jae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.257-270
    • /
    • 2022
  • In this paper, we design a smart factory risk improvement system and risk improvement method using AI edge devices. The smart factory risk improvement system collects, analyzes, prevents, and promptly responds to the worker's work performance process in the smart factory using AI edge devices, and can reduce the risk that may occur during work with improving the defect rate when workers perfom jobs. In particular, based on worker image information, worker biometric information, equipment operation information, and quality information of manufactured products, it is possible to set an abnormal risk condition, and it is possible to improve the risk so that the work is efficient and for the accurate performance. In addition, all data collected from cameras and IoT sensors inside the smart factory are processed by the AI edge device instead of all data being sent to the cloud, and only necessary data can be transmitted to the cloud, so the processing speed is fast and it has the advantage that security problems are low. Additionally, the use of AI edge devices has the advantage of reducing of data communication costs and the costs of data transmission bandwidth acquisition due to decrease of the amount of data transmission to the cloud.

Flow Prediction-Based Dynamic Clustering Method for Traffic Distribution in Edge Computing (엣지 컴퓨팅에서 트래픽 분산을 위한 흐름 예측 기반 동적 클러스터링 기법)

  • Lee, Chang Woo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1136-1140
    • /
    • 2022
  • This paper is a method for efficient traffic prediction in mobile edge computing, where many studies have recently been conducted. For distributed processing in mobile edge computing, tasks offloading from each mobile edge must be processed within the limited computing power of the edge. As a result, in the mobile nodes, it is necessary to efficiently select the surrounding edge server in consideration of performance dynamically. This paper aims to suggest the efficient clustering method by selecting edges in a cloud environment and predicting mobile traffic. Then, our dynamic clustering method is to reduce offloading overload to the edge server when offloading required by mobile terminals affects the performance of the edge server compared with the existing offloading schemes.