• Title/Summary/Keyword: edge classification

Search Result 256, Processing Time 0.023 seconds

An Efficient Block Segmentation and Classification of a Document Image Using Edge Information (문서영상의 에지 정보를 이용한 효과적인 블록분할 및 유형분류)

  • 박창준;전준형;최형문
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.10
    • /
    • pp.120-129
    • /
    • 1996
  • This paper presents an efficient block segmentation and classification using the edge information of the document image. We extract four prominent features form the edge gradient and orientaton, all of which, and thereby the block clssifications, are insensitive to the background noise and the brightness variation of of the image. Using these four features, we can efficiently classify a document image into the seven categrories of blocks of small-size letters, large-size letters, tables, equations, flow-charts, graphs, and photographs, the first five of which are text blocks which are character-recognizable, and the last two are non-character blocks. By introducing the clumn interval and text line intervals of the document in the determination of th erun length of CRLA (constrained run length algorithm), we can obtain an efficient block segmentation with reduced memory size. The simulation results show that the proposed algorithm can rigidly segment and classify the blocks of the documents into the above mentioned seven categories and classification performance is high enough for all the categories except for the graphs with too much variations.

  • PDF

Lightweight image classifier for CIFAR-10

  • Sharma, Akshay Kumar;Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.286-289
    • /
    • 2021
  • Image classification is one of the fundamental applications of computer vision. It enables a system to identify an object in an image. Recently, image classification applications have broadened their scope from computer applications to edge devices. The convolutional neural network (CNN) is the main class of deep learning neural networks that are widely used in computer tasks, and it delivers high accuracy. However, CNN algorithms use a large number of parameters and incur high computational costs, which hinder their implementation in edge hardware devices. To address this issue, this paper proposes a lightweight image classifier that provides good accuracy while using fewer parameters. The proposed image classifier diverts the input into three paths and utilizes different scales of receptive fields to extract more feature maps while using fewer parameters at the time of training. This results in the development of a model of small size. This model is tested on the CIFAR-10 dataset and achieves an accuracy of 90% using .26M parameters. This is better than the state-of-the-art models, and it can be implemented on edge devices.

Automatic Edge Class Formulation for Classified Vector Quantization

  • Jung, jae-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.2
    • /
    • pp.57-61
    • /
    • 1999
  • In the field of image compression, Classified Vector Quantization(CVQ) reveals attractive characteristics for preserving perceptual features, such as edges. However, the classification scheme is not generalized to effectively reconstruct different kinds of edge patterns in the original CVQ that predefines several linear-type edge classes: vortical edge horizontal edge diagonal edge classes. In this paper, we propose a new classification scheme, especially for edge blocks based on the similarity measure for edge patterns. An edge block is transformed to a feature vector that describes the detailed shape of the edge pattern The classes for edges are formulated automatically from the training images to result in the generalization of various shapes of edge patterns. The experimental results show the generated linear/nonlinear types of edge classes. The integrity of all the edges is faithfully preserved in the reconstructed image based on the various type of edge codebooks generated at 0.6875bpp.

  • PDF

Classification and Tracking of Hand Region Using Deformable Template and Condensation (Deformable Template과 Condensation을 이용한 손 영역 분류와 추적)

  • Jeong, Hyeon-Seok;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1477-1481
    • /
    • 2010
  • In this paper, we propose the classification and tracking method of the hand region using deformable template and condensation. To do this, first, we extract the hand region by using the fuzzy color filter and HCbCr color model. Second, we extract the edge of hand by applying the Canny edge algorithm. Third, we find the first template by calculating the conditional probability between the extracted edge and the model edge. If the accurate template of the first object is decided, the condensation algorithm tries to track it. Finally, we demonstrate the effectiveness and feasibility of the proposed method through some experiments.

SCLC-Edge Detection Algorithm for Skin Cancer Classification (피부암 병변 분류를 위한 SCLC-Edge 검출 알고리즘)

  • June-Young Park;Chang-Min Kim;Roy C. Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.256-263
    • /
    • 2022
  • Skin cancer is one of the most common diseases in the world, and the incidence rate in Korea has increased by about 100% over the past five years. In the United States, more than 5 million people are diagnosed with skin cancer every year. Skin cancer mainly occurs when skin tissue is damaged for a long time due to exposure to ultraviolet rays. Melanoma, a malignant tumor of skin cancer, is similar in appearance to Atypical melanocytic nevus occurring on the skin, making it difficult for the general public to be aware of it unless secondary signs occur. In this paper, we propose a skin cancer lesion edge detection algorithm and a deep learning model, CRNN, which performs skin cancer lesion classification for early detection and classification of these skin cancers. As a result of the experiment, when using the contour detection algorithm proposed in this paper, the classification accuracy was the highest at 97%. For the Canny algorithm, 78% was shown, 55% for Sobel, and 46% for Laplacian.

The Accuracy Improvement of Geo-Spatial Information in Urban Area with terrain Classification (지형분류에 따른 도심지역의 지형공간정보 정확도 향상)

  • 김정일;김현태;류지호;최동주;이현직
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.301-308
    • /
    • 2003
  • As the results of this study, the proposed method of this study which is increased to accuracy of DEM by classification of terrain is better than accuracy of DEM which is automatically generated by digital photogrammetry workstation system(DPWS). And, the edge detection method which is proposed by this study is established to extraction of geo-spatial information in ortho image.

  • PDF

A study on Adaptive Multi-level Median Filter using Direction Information Scales (방향성 정보 척도를 이용한 적응적 다단 메디안 필터에 관한 연구)

  • 김수겸
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.611-617
    • /
    • 2004
  • Pixel classification is one of basic image processing issues. The general characteristics of the pixels belonging to various classes are discussed and the radical principles of pixel classification are given. At the same time. a pixel classification scheme based on image direction measure is proposed. As a typical application instance of pixel classification, an adaptive multi-level median filter is presented. An image can be classified into two types of areas by using the direction information measure, that is. smooth area and edge area. Single direction multi-level median filter is used in smooth area. and multi-direction multi-level median filter is taken in the other type of area. What's more. an adaptive mechanism is proposed to adjust the type of the filters and the size of filter window. As a result. we get a better trade-off between preserving details and noise filtering.

CLASSIFICATION OF REFLEXIBLE EDGE-TRANSITIVE EMBEDDINGS OF $K_{m,n}$ FOR ODD m, n

  • Kwon, Young-Soo
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.533-541
    • /
    • 2009
  • In this paper, we classify reflexible edge-transitive embeddings of complete bipartite graphs $K_{m,n}$ for any odd positive integers m and n. As a result, for any odd m, n, it will be shown that there exists only one reflexible edge-transitive embedding of $K_{m,n}$ up to isomorphism.

Detecting Adversarial Examples Using Edge-based Classification

  • Jaesung Shim;Kyuri Jo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.67-76
    • /
    • 2023
  • Although deep learning models are making innovative achievements in the field of computer vision, the problem of vulnerability to adversarial examples continues to be raised. Adversarial examples are attack methods that inject fine noise into images to induce misclassification, which can pose a serious threat to the application of deep learning models in the real world. In this paper, we propose a model that detects adversarial examples using differences in predictive values between edge-learned classification models and underlying classification models. The simple process of extracting the edges of the objects and reflecting them in learning can increase the robustness of the classification model, and economical and efficient detection is possible by detecting adversarial examples through differences in predictions between models. In our experiments, the general model showed accuracy of {49.9%, 29.84%, 18.46%, 4.95%, 3.36%} for adversarial examples (eps={0.02, 0.05, 0.1, 0.2, 0.3}), whereas the Canny edge model showed accuracy of {82.58%, 65.96%, 46.71%, 24.94%, 13.41%} and other edge models showed a similar level of accuracy also, indicating that the edge model was more robust against adversarial examples. In addition, adversarial example detection using differences in predictions between models revealed detection rates of {85.47%, 84.64%, 91.44%, 95.47%, and 87.61%} for each epsilon-specific adversarial example. It is expected that this study will contribute to improving the reliability of deep learning models in related research and application industries such as medical, autonomous driving, security, and national defense.

A Study on the Efficacy of Edge-Based Adversarial Example Detection Model: Across Various Adversarial Algorithms

  • Jaesung Shim;Kyuri Jo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.31-41
    • /
    • 2024
  • Deep learning models show excellent performance in tasks such as image classification and object detection in the field of computer vision, and are used in various ways in actual industrial sites. Recently, research on improving robustness has been actively conducted, along with pointing out that this deep learning model is vulnerable to hostile examples. A hostile example is an image in which small noise is added to induce misclassification, and can pose a significant threat when applying a deep learning model to a real environment. In this paper, we tried to confirm the robustness of the edge-learning classification model and the performance of the adversarial example detection model using it for adversarial examples of various algorithms. As a result of robustness experiments, the basic classification model showed about 17% accuracy for the FGSM algorithm, while the edge-learning models maintained accuracy in the 60-70% range, and the basic classification model showed accuracy in the 0-1% range for the PGD/DeepFool/CW algorithm, while the edge-learning models maintained accuracy in 80-90%. As a result of the adversarial example detection experiment, a high detection rate of 91-95% was confirmed for all algorithms of FGSM/PGD/DeepFool/CW. By presenting the possibility of defending against various hostile algorithms through this study, it is expected to improve the safety and reliability of deep learning models in various industries using computer vision.