• Title/Summary/Keyword: edge beam

Search Result 352, Processing Time 0.039 seconds

A Study on the Image Enhancement of Port Films using Edge-Adaptive Kalmsn filter (경계-적응 칼만필터를 이용한 Port Films의 영상개선에 관한 연구)

  • 박순옥
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.427-432
    • /
    • 1996
  • The primary purpose of port filming is to verify the treatment volume under treatment. Although the image quality with the megavoltage x-ray beam is poorer than with the diagnostic or the simulator film. This paper proposes an edge-adaptive Kalman filter for the image enhancement of port films. Suggested filtering procedure preserves edge information and eliminates edge noise and inside and outside treatment area preserving treatment boundary.

  • PDF

Calculating Array Patterns Using an Active Element Pattern Method with Ground Edge Effects

  • Lee, Sun-Gyu;Lee, Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.175-181
    • /
    • 2018
  • The array patterns of a patch array antenna were calculated using an active element pattern (AEP) method that considers ground edge effects. The classical equivalent radiation model of the patch antenna, which is characterized by two radiating slots, was adopted, and the AEPs that include mutual coupling were precisely calculated using full-wave simulated S-parameters. To improve the accuracy of the calculation, the edge diffraction of a ground plane was incorporated into AEP using the uniform geometrical theory of diffraction. The array patterns were then calculated on the basis of the computed AEPs. The array patterns obtained through the conventional AEP approach and the AEP method that takes ground edge effects into account were compared with the findings derived through full-wave simulations conducted using a High Frequency Structure Simulator (HFSS) and FEKO software. Results showed that the array patterns calculated using the proposed AEP method are more accurate than those derived using the conventional AEP technique, especially under a small number of array elements or under increased steering angles.

X-ray Absorption Near-edge Studies of Au1-xPtx alloys

  • Y.D. Chung;Lim, K.Y.;Lee, Y.S.;C.N.Whang;Park, B.S.;Y.Jeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.164-164
    • /
    • 2000
  • Since Au-Pt alloys have various atomic structures depending upon composition and annealing temperature, it is very interesting to investigate the electronic structures of alloys. We studied the changes of the electronic structure I the Au-Pt alloys by x-ray absorption near edge spectroscopy (XANES). Two kinds of Au-Pt alloy samples were prepared by arc melting methods and ion-beam-mixing technique. The Pt L2, 3-edge and Au L2, 3-edge X-ray absorption spectra (XPS) were measured with the electron yield mode detector at the 3C1 beam line of the Pohang Light Source (PLS). It was found that there was a substantial decrease in the area of the Pt L2, 3 white lines compared with that of pure Pt. The observed decrease in white line area was attributed to an increase in the number of pure Pt. The observed decrease in white line area was attributed to an increase in the number of 5d-electrons at the Pt site upon alloy formation. However, the Au L2, 3 edge spectra for Au-Pt alloys are all similar to that of pure Au. This implies that the 5d hole count of Au is not changed by alloy formation with Pt.

  • PDF

Fracture analysis of spot-welds with an edge crack using 2-D hybrid special finite element (이차원 하이브리드 특별 요소을 이용한 균열을 내포하는 용접점의 파단 해석)

  • Yang C. H.;Song J. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.39-42
    • /
    • 2004
  • In the present paper, a novel systematic method using the 2-D hybrid special finite elements containing an edge crack is employed to study the fracture behaviors of laser beam spot-welds in automotive structures. 2-D hybrid special finite elements each containing an edge crack can assure the high precision especially in the vicinity of crack tips and give a better description of its singularity with only one hybrid element surrounding one crack. Therefore, the numerical modeling of the laser beam spot-welds can be greatly simplified. Some numerical examples are provided to demonstrate the validity and versatility of the proposed method. All the lap-shear, lap-tension and angle clip specimens are analyzed and some useful fracture parameters (such as stress intensity factors, the initial direction of crack growth) are obtained simultaneously.

  • PDF

Finite Element Analysis of Gabled Hyperbolic Paraboloid Shells Subjected to Support Movements (지점변형을 하는 모임지붕형 쌍곡포물선쉘의 유한요소 해석)

  • Kim, Seung-Nam;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.57-69
    • /
    • 2012
  • This study investigated the behaviors of the gabled hyperbolic paraboloid shell structure subjected to differential settlement and the horizontal displacement due to the elongation of tie rod/beam on supports. Two types of shell structure with different roof slopes are used in study; conventional type which has perimeter beams around the shell panel, and simple type which removes the edge beams along the slab edge line. The effect of the removal of edge beam under vertical or horizontal displacement on supports, and the roof slope was compared using the finite element analysis.

Modeling of Radiation Beams from Ultrasonic Transducers in a Single Medium (단일 매체에서의 평면 초음파 탐촉자의 방사 음장 모델링 기법)

  • Song, Sung-Jin;Kim, Hak-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.2
    • /
    • pp.91-101
    • /
    • 2000
  • Modeling of radiation beam from ultrasonic transducers has been investigated extensively, since it is one of the most important, fundamental issues that have great influence on the accuracy of an ultrasonic measurement model. Here, three popular radiation models, namely the Rayleigh-Sommerfeld integral model, the boundary diffraction wave model and the edge element model, are discussed briefly, and the radiation beam fields from ultrasonic transducers with planar, circular and rectangular cross-sections are calculated using these three models. Then, the accuracy and the time-efficiency of these methods are compared based on the calculation results.

  • PDF

Thermal Stresses near the Edge of Laminated Beam (다층보 자유단 부위의 열응력)

  • Kim Hyung-Nam;Kim Young-Ho
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 2005
  • An analytical method for determining the thermal stress distributions in a 3-layered beam is developed, which is focused on the end effects. This method gives the stress distributions which satisfy the stress-free boundary condition at the end completely. For verification of the method, a numerical example which was introduced by other researchers is treated. The stress distributions agree with the results of other researchers. The results show that the show and peeling stresses at the interfaces are significant near the edge and become negligible in the interior region.

Comparative study on cracked beam with different types of cracks carrying moving mass

  • Jena, Shakti P.;Parhi, Dayal R.;Mishra, Devasis
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.797-811
    • /
    • 2015
  • An analytical-computational method along with finite element analysis (FEA) has been employed to analyse the dynamic behaviour of deteriorated structures excited by time- varying mass. The present analysis is focused on the comparative study of a double cracked beam with inclined edge cracks and transverse open cracks subjected to traversing mass. The assumed computational method applied is the fourth order Runge-Kutta method. The analysis of the structure has been carried out at constant transit mass and speed. The response of the structure is determined at different crack depth and crack inclination angles. The influence of the parameters like crack depth and crack inclination angles are investigated on the dynamic behaviour of the structure. The results obtained from the assumed computational method are compared with those of the FEA for validation and found good agreements with FEA.

Free vibration analysis of edge cracked symmetric functionally graded sandwich beams

  • Cunedioglu, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.1003-1020
    • /
    • 2015
  • In this study, free vibration analysis of an edge cracked multilayered symmetric sandwich beams made of functionally graded materials are investigated. Modelling of the cracked structure is based on the linear elastic fracture mechanics theory. Material properties of the functionally graded beams change in the thickness direction according to the power and exponential laws. To represent functionally graded symmetric sandwich beams more realistic, fifty layered beam is considered. Composition of each layer is different although each layer is isotropic and homogeneous. The considered problem is carried out within the Timoshenko first order shear deformation beam theory by using finite element method. A MATLAB code developed to calculate natural frequencies for clamped and simply supported conditions. The obtained results are compared with published studies and excellent agreement is observed. In the study, the effects of crack location, depth of the crack, power law index and slenderness ratio on the natural frequencies are investigated.

Concurrent operation of round beam and flat beam in a low-emittance storage ring

  • J. Lee;S. Ahn;J. Ko;B. Oh;G. Jang;Y.D. Yoon;S. Shin;J.-H.Kim;M. Chung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3866-3873
    • /
    • 2023
  • In 4th-generation storage rings, whether to operate the beam as round or flat is a critical question. A round beam has equal horizontal and vertical emittances, and is an efficient solution to reduce strong intra-beam scattering effects and lengthen the Touschek lifetimes, but a flat beam produces a brighter photon beam than a round beam. To provide both beams concurrently rather than bifurcating the beam time, this paper presents the exploitation of beam dynamics and the cutting-edge fast pulser that supports concurrent operation of round beam and flat beam.