• Title/Summary/Keyword: edge beam

Search Result 352, Processing Time 0.025 seconds

Wheel Load Distribution of Continous Reinforced Concrete Slab Bridge (연속 철근콘크리트 슬래브 교량의 윤하중 분포폭에 관한 연구)

  • 신호상;오병환
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.135-143
    • /
    • 1998
  • The wheel load distribution width for lane load is not specified in current Korea bridge design code(KD code), not like in current AASHTO and AASHTO LRFD specifications which specity it as twice of wheel load distribution width for wheel load. In this study, the wheel load distribution width in continuous reinforced concrete slab bridge is investigated. The major variables affecting the wheel load distribution of a reinforced concrete continuous slab bridge are the span length, bridge width, existence edge beam and boundary condition. From a series of comprehensive parametric study on each variable, the formula for wheel load distribution in continuous reinforced concrete slab bridge is proposed from the nonlinear regression analysis of finite element analysis results. The proposed formulas can be used efficiently in the accurate design of continuous reinforced concrete slab bridges.

Comparison of seismic progressive collapse distribution in low and mid rise RC buildings due to corner and edge columns removal

  • Karimiyan, Somayyeh
    • Earthquakes and Structures
    • /
    • v.18 no.6
    • /
    • pp.691-707
    • /
    • 2020
  • One of the most important issues in structural systems is evaluation of the margin of safety in low and mid-rise buildings against the progressive collapse mechanism due to the earthquake loads. In this paper, modeling of collapse propagation in structural elements of RC frame buildings is evaluated by tracing down the collapse points in beam and column structural elements, one after another, under earthquake loads and the influence of column removal is investigated on how the collapse expansion in beam and column structural members. For this reason, progressive collapse phenomenon is studied in 3-story and 5-story intermediate moment resisting frame buildings due to the corner and edge column removal in presence of the earthquake loads. In this way, distribution and propagation of the collapse in progressive collapse mechanism is studied, from the first element of the structure to the collapse of a large part of the building with investigating and comparing the results of nonlinear time history analyses (NLTHA) in presence of two-component accelograms proposed by FEMA_P695. Evaluation of the results, including the statistical survey of the number and sequence of the collapsed points in process of the collapse distribution in structural system, show that the progressive collapse distribution are special and similar in low-rise and mid-rise RC buildings due to the simultaneous effects of the column removal and the earthquake loads and various patterns of the progressive collapse distribution are proposed and presented to predict the collapse propagation in structural elements of similar buildings. So, the results of collapse distribution patterns and comparing the values of collapse can be utilized to provide practical methods in codes and guidelines to enhance the structural resistance against the progressive collapse mechanism and eventually, the value of damage can be controlled and minimized in similar buildings.

Cyclic test for solid steel reinforced concrete frames with special-shaped columns

  • Liu, Zu Q.;Xue, Jian Y.;Zhao, Hong T.;Gao, Liang
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.317-331
    • /
    • 2014
  • An experimental study was performed to investigate the seismic performance of solid steel reinforced concrete (SRC) frames with special-shaped columns that are composed of SRC special-shaped columns and reinforced concrete beams. For this purpose, two models of two-bay and three-story frame, including an edge frame and a middle frame, were designed and tested. The failure process and patterns were observed. The mechanical behaviors such as load-displacement hysteretic loops and skeleton curves, load bearing capacity, drift ratio, ductility, energy dissipation and stiffness degradation of test specimens were analyzed. Test results show that the failure mechanism of solid SRC frame with special-shaped columns is the beam-hinged mechanism, satisfying the seismic design principle of "strong column and weak beam". The hysteretic loops are plump, the ductility is good and the capacity of energy dissipation is strong, indicating that the solid SRC frame with special-shaped columns has excellent seismic performance, which is better than that of the lattice SRC frame with special-shaped columns. The ultimate elastic-plastic drift ratio is larger than the limit value specified by seismic code, showing the high capacity of collapse resistance. Compared with the edge frame, the middle frame has higher carrying capacity and stronger energy dissipation, but the ductility and speed of stiffness degradation are similar. All these can be helpful to the designation of solid SRC frame with special-shaped columns.

Evaluation of Bonwill triangle using cone beam computerized tomography in Korean (콘빔형 전산화단층영상을 이용한 한국인의 본윌 삼각에 대한 평가)

  • Kong, Hyun-Jun;Oh, Sang-Chun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.2
    • /
    • pp.97-103
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the Bonwill triangle of Korean using the cone beam computerized tomography (Cone-beam CT). Materials and Methods: 120 Koreans (60 males and 60 females) who visited Daejeon Dental College Hospital of Wonkwang University and who underwent the Cone-beam CT were selected. The Cone-beam CT images were analysed with Invivo 5.1 (Anatomage, San Jose, USA). After reorientation of axis, the intercondylar distance was measured by clicking both middle points of condyle. And the condyle-incisor distance was measured by clicking the middle point of condyle and contact point of the mandibular central incisor's incisal edge. The collected data were analysed using the SPSS Version 23.0 (IBM Inc., Armonk, USA) and statistical significance was verified by gender using independent t-test. Results: The mean intercondylar distance of Korean was 105.9 mm, and the male (108.3 mm) was statistically significantly larger than the female (103.4 mm). The mean condyle-incisor distance of Korean was 105.2 mm, and the male (108.1 mm) was statistically significantly larger than the female (102.3 mm). Conclusion: The mean intercondylar distance of Korean in this study was 105.9 mm that was smaller than well-known 110 mm of Caucasian and the male was statistically significantly larger than the female. Within the limitations of this study, it would be necessary to use the articulator which can adjust the intercondylar distance according to the individual for prosthodontic treatment of Korean.

A Study of the Photoluminescence of ZnO Thin Films Deposited by Radical Beam Assisted Molecular Beam Epitaxy (라디칼 빔 보조 분자선 증착법 (Radical Beam Assisted Molecular Beam Epitaxy) 법에 의해 성장된 ZnO 박막의 발광 특성에 관한 연구)

  • Suh, Hyo-Won;Byun, Dong-jin;Choi, Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.347-351
    • /
    • 2003
  • II-Ⅵ ZnO compound semiconductor thin films were grown on $\alpha$-Al$_2$O$_3$(0001) single crystal substrate by radical beam assisted molecular beam epitaxy and the optical properties were investigated. Zn(6N) was evaporated using Knudsen cell and O radical was assisted at the partial pressure of 1$\times$10$^{4}$ Torr and radical beam source of 250-450 W RF power. In $\theta$-2$\theta$ x-ray diffraction analysis, ZnO thin film with 500 nm thickness showed only ZnO(0002)and ZnO(0004) peaks is believed to be well grown along c-axis orientation. Photoluminescence (PL) measurement using He-Cd ($\lambda$=325 nm) laser is obtained in the temperature range of 9 K-300 K. At 9 K and 300 K, only near band edge (NBE) is observed and the FWHM's of PL peak of the ZnO deposited at 450 RF power are 45 meV and 145 meV respectively. From no observation of any weak deep level peak even at room temperature PL, the ZnO grains are regarded to contain very low defect density and impurity to cause the deep-level defects. The peak position of free exciton showed slightly red-shift as temperature was increased, and from this result the binding energy of free exciton can be experimentally determined as much as $58\pm$0.5 meV, which is very closed to that of ZnO bulk. By van der Pauw 4-point probe measurement, the grown ZnO is proved to be n-type with the electron concentration($n_{e}$ ) $1.69$\times$10^{18}$$cm^3$, mobility($\mu$) $-12.3\textrm{cm}^2$/Vㆍs, and resistivity($\rho$) 0.30 $\Omega$$\cdot$cm.

Cyclic testing of weak-axis column-tree connections with formation of plastic hinge at beam splice

  • Oh, Keunyeong;Chen, Liuyi;Hong, Sungbin;Yang, Yang;Lee, Kangmin
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1039-1054
    • /
    • 2015
  • The purpose of this study was to evaluate the seismic performance of weak-axis column-tree type connections used in steel moment frames. These connections are composed of a shop-welded and fieldbolted steel structure and can improve welding quality. On this basis, column-tree type connections are widely used in steel moment resisting frames in Korea and Japan. In this study, splices designed with a semirigid concept regarding the seismic performance of column-tree connections were experimentally evaluated. The structures can absorb energy in an inelastic state rather than the elastic state of the structures by the capacity design method. For this reason, the plastic hinge might be located at the splice connection at the weak-axis column-tree connection by reducing the splice plate thickness. The main variable was the distance from the edge of the column flange to the beam splice. CTY series specimens having column-tree connections with splice length of 600 mm and 900 mm were designed, respectively. For comparison with two specimens with the main variable, a base specimen with a weak-axis column-tree connection was fabricated and tested. The test results of three full-scale test specimens showed that the CTY series specimens successfully developed ductile behavior without brittle fracture until 5% story drift ratio. Although the base specimen reached a 5% story drift ratio, brittle fracture was detected at the backing bar near the beam-to-column connection. Comparing the energy dissipation capacity for each specimen, the CTY series specimens dissipated more energy than the base specimen.

Modeling of cyclic joint shear deformation contributions in RC beam-column connections to overall frame behavior

  • Shin, Myoungsu;LaFave, James M.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.645-669
    • /
    • 2004
  • In seismic analysis of moment-resisting frames, beam-column connections are often modeled with rigid joint zones. However, it has been demonstrated that, in ductile reinforced concrete (RC) moment-resisting frames designed based on current codes (to say nothing of older non-ductile frames), the joint zones are in fact not rigid, but rather undergo significant shear deformations that contribute greatly to global drift. Therefore, the "rigid joint" assumption may result in misinterpretation of the global performance characteristics of frames and could consequently lead to miscalculation of strength and ductility demands on constituent frame members. The primary objective of this paper is to propose a rational method for estimating the hysteretic joint shear behavior of RC connections and for incorporating this behavior into frame analysis. The authors tested four RC edge beam-column-slab connection subassemblies subjected to earthquake-type lateral loading; hysteretic joint shear behavior is investigated based on these tests and other laboratory tests reported in the literature. An analytical scheme employing the modified compression field theory (MCFT) is developed to approximate joint shear stress vs. joint shear strain response. A connection model capable of explicitly considering hysteretic joint shear behavior is then formulated for nonlinear structural analysis. In the model, a joint is represented by rigid elements located along the joint edges and nonlinear rotational springs embedded in one of the four hinges linking adjacent rigid elements. The connection model is able to well represent the experimental hysteretic joint shear behavior and overall load-displacement response of connection subassemblies.

Shape Control using Piezoelectric Materials and Shape Memory Alloy (압전재료와 형상기억합금을 이용한 형상제어)

  • Park, H.C.;Hwang, W.;Oh, J.T.;Bae, S.M.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1311-1320
    • /
    • 2000
  • In this study, shape memory alloy(SMA) wires and piezoceramic actuators(PZT's) are employed in order to generate higher modes on the beam deformations. Compressive force is generated and applied to the beam by the pre-strained SMA wires attached at both ends of the beam. PZT's apply concentrated moments to several locations on the beam. Combinations of the compressive force and concentrated moments are investigated in order to understand the higher-mode deformation of beams. The first desired mode shape is obtained by controlling the temperature of the SMA wires. The first and third mode shapes are performed experimentally by heating SMA wires up to phase transformation temperature. The adaptive wing is defined as a wing whose shape parameters such as the camber, wing twist and thickness can be varied in order to change the wing shape for various flight conditions. In this research, control of the camber has been studied. The wing model consists of three plates and many ribs. Two of the plates are placed parallel to each other and they are clamped at one edge. Third plate connects the other edges of the parallel plates together. Each rib is made of SMA wire and connected to the parallel plates. It generates concentrated force and applies to the plates in oblique directions. The PZT's are bonded onto the plates and exert concentrated moments upon the plate at several locations. The object of this research is to generate various shape of wing by combining the concentrated forces and moments.

  • PDF

Fiber optic shape sensor system for a morphing wing trailing edge

  • Ciminello, Monica;Ameduri, Salvatore;Concilio, Antonio;Dimino, Ignazio;Bettini, Paolo
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.441-450
    • /
    • 2017
  • The objective of this work is to present a conceptual design and the modelling of a distributed sensor system based on fiber optic devices (Fiber Bragg Grating, FBG), aimed at measuring span-wise and chord-wise variations of an adaptive (morphing) trailing edge. The network is made of two different integrated solutions for revealing deformations of the reference morphing structure. Strains are confined to typical values along the span (length) but they are expected to overcome standard ranges along the chord (width), up to almost 10%. In this case, suitable architectures may introduce proper modulations to keep the measured deformation low while preserving the information content. In the current paper, the designed monitoring system combines the use of a span-wise fiber reinforced patch with a chord-wise sliding beam. The two elements make up a closed grid, allowing the reconstruction of the complete deformed shape under the acceptable assumption that the transformation refers to regular geometry variations. Herein, the design logic and some integration issues are reported. Preliminary experimental test results are finally presented.

Automated radiation field edge detection in portal image using optimal threshold value (최적 문턱치 설정을 이용한 포탈영상에서의 자동 에지탐지 기법에 관한 연구)

  • 허수진
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.337-344
    • /
    • 1995
  • Because of the high energy of the treatment beam, contrast of portal films is very poor. Many image processing techniques have been applied to the portal images but a significant drawback is the loss of definition on the edges of the treatment field. Analysis of this problem shows that it may be remedied by separating the treatment field from the background prior to enhancement and uslng only the pixels within the field boundary in the enhancement procedure. A new edge extraction algorithm for accurate extraction of the radiation field boundary from portal Images has been developed for contrast enhancement of portal images. In this paper, portal image segmentation algorithm based on Sobel filtration, labelling processes and morphological thinning has been presented. This algorithm could automatically search the optimal threshold value which is sensitive to the variation of the type and quality of portal images.

  • PDF