• Title/Summary/Keyword: eddy currents

Search Result 139, Processing Time 0.026 seconds

Finite Element Analysis of a BLDC Motor Considering the Eddy Current in Rotor Steel Shell (회전자 철심의 와전류를 고려한 BLDC 전동기의 유한 요소 해석)

  • Park, Seung-Chan;Yun, Tae-Ho;Gwon, Byeong-Il;Yun, Hui-Su;Won, Seong-Hong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.3
    • /
    • pp.110-116
    • /
    • 1999
  • This paper describes the effect of eddy currents in the rotor steel shell of exterior-rotor permanent magnet BLDC motor of which rotor is revolving at a high speed. A two-dimensional time-stepping finite element method is used for analyzing electromagnetic field and computing performances of the motor. As a result the effect of the eddy currents in the rotor steel shell is shown by comparing the analysis results from both the proposed method and the conventional one.

  • PDF

Effects of Vertical and Lateral Motion on Levitation Magnet System (상하 및 좌우진동이 부상용 전자석 시스템에 미치는영향)

  • 차귀수;배동진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.1
    • /
    • pp.18-23
    • /
    • 1992
  • Magnet core and rail of a magnetically levitated vehicle are usually made of highly conductive materials. Accordingly, eddy currents are induced in those members. Eddy currents often lead to a decrement of levitation and guidance force. This paper has calculated the decrement of both forces due to eddy current generated by magnet's vertical and lateral motion. U-shaped electromagnet and rail were chosen as amodel of 2D finite element analysis. Calculated results proved that both forces dropped significantly at high speed. Consequently, effects of eddy current should be considered in designing the magnet and control system.

  • PDF

Development of an Eddy Current Type Magnetic Floor Hinge

  • Lee, Kapjin;Kim, Chulsoo;Park, Kyihwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.118.4-118
    • /
    • 2002
  • $\textbullet$ Magnetic floor hinge $\textbullet$ Recovering torque $\textbullet$ Eddy Currents $\textbullet$ Magnetic damper $\textbullet$ Optimal design $\textbullet$ Cost optimization

  • PDF

Calculation of induced currents and analysis of shielding effectiveness in finite conductive shield (도전성 유한 차폐판의 유도전류 계산 및 차폐효과 분석)

  • Kang, Dael-Ha;Son, Jung-Dae;Lee, Yung-Sik;Jo, Yeong-Ho;Choi, Phil-Soo;Park, Sang-Ho;Kim, Won-Hi
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.551-552
    • /
    • 2011
  • In this study new evaluation method of eddy currents in conductive shielding sheets are introduced. This method is based on the magnetic flux linkage in rectangular cells. According to this method the allocated amount of memory and the calculation time can be reduced. In this method calculation of magnetic field in any space can be performed by summing contributions of source currents and eddy currents in conductive shielding sheets. This method is applicable to the design of magnetic field-shield.

  • PDF

Cardiac Magnetic Resonance Imaging Using Multi-physiological Intelligent Trigger System (멀티 생체신호 동기 시스템을 이용한 심장자기공명영상)

  • Park, Jinho;Yoon, Jong-Hyun;Yang, Young-Joong;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.3
    • /
    • pp.244-252
    • /
    • 2014
  • Purpose : We proposed a multi-physiological signals based real-time intelligent triggering system(MITS) for Cardiac MRI. Induced noise of the system was analyzed. Materials and Methods: MITS makes cardiac MR imaging sequence synchronize to the cardiac motion using ECG, respiratory signal and second order derivative of $SPO_2$signal. Abnormal peaks due to arrhythmia or subject's motion are rejected using the average R-R intervals and R-peak values. Induced eddy currents by gradients switching in cardiac MR imaging are analyzed. The induced eddy currents were removed by hardware and software filters. Results: Cardiac MR images that synchronized to the cardiac and respiratory motion are acquired using MITS successfully without artifacts caused by induced eddy currents of gradient switching or subject's motion or arrhythmia. We showed that the second order derivative of the $SPO_2$ signal can be used as a complement to the ECG signals. Conclusion: The proposed system performs cardiac and respiratory gating with multi-physiological signals in real time. During the cardiac gating, induced noise caused by eddy currents is removed. False triggers due to subject's motion or arrhythmia are rejected. The cardiac MR imaging with free breathing is obtained using MITS.

Analysis of Induction Heating System using the Impedance Boundary Condition (임피던스 경계조건을 이용한 유도가열 시스템의 해석)

  • 김우균;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.258-261
    • /
    • 1998
  • Induction heating is commonly used in process heating prior to metal working and in heat treationg, welding, and melting. For an analysis of induction heating system, it is necessary to calculate eddy currents in conductors induced by a source current. This study examines the use of the Impedance Boundary Condition for the reduction of the field problem encountered in the computation of eddy currents in non-magnetic and magnetic conductors with small penetration depths to a simpler exterior problem. The electric field intensities on the conductor surfaces computed by using the IBC are compared with the values obtained from the full region solution (i.e. without the use of IBC) and those agree well with the latter.

  • PDF

Topology Optimization of Magneto-thermal Systems Considering Eddy Current as Joule Heat (와전류를 열원으로 고려한 자계-열계 위상최적설계)

  • Shim, Ho-Kyung;Wang, Se-Myung;Hameyer, Kay
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.651-652
    • /
    • 2006
  • This research presents a topology optimization for manipulating the main heat flow in coupled magneto-thermal systems. The heat generated by eddy currents is considered in the design domain assuming an adiabatic boundary. For a practical optimization, the convection condition is considered in the topological process of the thermal field. Topology design sensitivity is derived by employing the discrete system equations combined with the adjoint variable method. As numerical examples, a simple iron and a C-core design heated-up by eddy currents demonstrate the strength of the proposed approach to solve the coupled problem.

  • PDF

Influence Analysis of Power Grid Harmonics on Synchronous Hydro Generators

  • Qiu, Hongbo;Fan, Xiaobin;Feng, Jianqin;Yang, Cunxiang
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1577-1584
    • /
    • 2018
  • The content of harmonic current increases with an increase in the number of power electronic devices in power grid. When a generator is directly connected to the power grid through a step-up transformer, the influence of the harmonic currents on the generator is inevitable. To study the influences of harmonics on generators, a 24-MW bulb tubular turbine generator is taken as an example in this paper. A 2-D transient electromagnetic field model is established. Through a comparative analysis of the data of experiments and simulations, the correctness of the model is verified. The values of the air gap magnetic density, torque and losses of the generator under various conditions are calculated using the finite element method. Taking the rated condition as a reference, the influence of the harmonic currents on the magnetic flux density is analyzed. It is confirmed that the time harmonic is a key factor affecting the generator performance. At the same time, the effects of harmonic currents on the torque ripple, average torque and eddy current loss of the generator are studied, and the mechanism of the variation of the eddy current loss is also discussed.

A Study on the Design and the Analysis of Canned-motor for SMART(System integrated Modular Advanced Reactor) using the Equivalent Circuit with Consideration of the Can-loss (Can손실이 고려된 등가회로도를 이용한 SMART용 Canned-motor 설계 및 해석에 관한 연구)

  • Gu, Dae-Hyeon;Gang, Do-Hyeon;Park, Jeong-U;Kim, Jong-In;Park, Jin-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.10
    • /
    • pp.483-493
    • /
    • 2001
  • The 3-phase induction is used for the MCP(main coolant pump) and the pure water is used for lubrication of bearing because of the difficulty of repair. Therefore the type of motor is the canned-motor that is welded by sealed can to prevent the stator and rotor from the lubricating water. A lot of Eddy currents are produced in the can because of the conductivity of material. And these eddy currents in the can are the most important cause that decrease the efficiency of induction motor. Therefore we have to find the method to decrease these eddy currents in the can for the improvement of efficiency of motor. In this paper, we proposed the method of design and analysis of canned-motor using equivalent circuit with consideration of can loss for the improvement of efficiency of motor.

  • PDF

Finite Element Analysis for Eddy Current Signal of Aluminum Plate with Surface Breaking Crack (알루미늄 평판의 표면결함에 대한 와전류 신호의 유한요소해석)

  • Lee Joon-Hyun;Lee Bong-Soo;Lee Min-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1336-1343
    • /
    • 2005
  • The detection mechanism of the flaw for the nondestructive testing using eddy current is related to the interaction of the induced eddy currents in the test specimen with flaws and the coupling of these interaction effects with the moving test probe. In this study, the two-dimensional electromagnetic finite element analysis(FEM) fur the eddy current signals of the aluminum plate with different depth of surface cracks is described and the comparison is also made between experimental and predicted signals analyzed by FEM. In addition, the characteristics of attenuation of the eddy current density due to the variation of the depth of a conductor are evaluated. The effective parameters for the application of eddy current technique to evaluate surface cracks are discussed by analyzing the characteristics of the eddy current signals due to the variation of crack depths.