• Title/Summary/Keyword: eddies

Search Result 197, Processing Time 0.023 seconds

Hydraulic Model Experiment on the Circulation in Sagami Bay, Japan (II) - Dependence of the Circulation Pattern on External and Internal Rossby Number in Baroclinic Rotating Model

  • Choo Hyo-Sang;Sugimoto Takasige
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.1
    • /
    • pp.5-20
    • /
    • 2002
  • To investigate the effect of mechanical parameters on the circulation and its fluctuation in Sagami Bay, baroclinic model experiments were carried out by use of a two-layer source-sink flow in a rotating tank. In the experiment, a simple coastal topography with flat bottom was reproduced. The results show that the path of the Through Flow, which corresponds to the branch current of the Kuroshio, depends on external Rossby number (Ro) and internal Rossby number $(Ro^*)$, and divided into two regimes. For $Ro^*\leq1.0$ in which Rossby internal radius of deformation of the Through Flow is smaller than the width of the approaching channel, the current flows along the Oshima Island as a coastal boundary density current separated from the western boundary of the channel. For $Ro^*>1.0$ it changes to a jet flow along the western boundary of the channel, separated from the coast of Oshima Island. The current is independent on both Ro and Ro* in the regime of $Ro^*>1.0,\;Ro\geq0.06$ and $Ro^*\leq1.0,\;Ro\geq0.06$. The pattern of the cyclonic circulation in the inner part of the bay is also determined by Ro and Ro*. In case of $Ro^*\leq1.0$, frontal eddies are formed in the northern boundary of the Through Flow. These frontal eddies intrude into the inner part along the eastern boundary of the bay providing vorticity to form and maintain the inner cyclonic circulation. For $Ro^*>1.0$, the wakes from the Izu peninsula are superposed intensifying the cyclonic circulation. The pattern of the cyclonic circulation is divided into three types; 1) weak cyclonic circulation and the inner anticyclonic circulation $(Ro<0.12)$. 2) cyclonic circulation in the bay $(0.12\leq Ro<0.25)$. 3) cyclonic circulation with strong boundary current $(RO\geq0.25)$.

The Study on Stability Channel Technology by Using Groyne in Alluvial Stream - Riverside Protection Techniques by Using Groyne - (충적하천에서 수제에 의한 안정하도 확보기술에 관한 연구 - 수제에 의한 하안보호 기법 -)

  • Park, Hyo-Gil;Jung, Sung-Soon;Kim, Chul-Moon;Ahn, Won-Sik;Jee, Hong-Kee
    • Journal of Wetlands Research
    • /
    • v.13 no.1
    • /
    • pp.79-94
    • /
    • 2011
  • As demonstrated in study for non-submerged groynes, the flow field is predominantly two-dimensional, with mainly horizontal eddies. The eddies shed form the tips of the groynes and migrate in the flow direction. These eddies have horizontal dimensions in the order of tens of meters and time-scales in the order of minutes. In the standard flow simulations, these motions are usually not resolved, due to a too coarse grid, too large time steps and, more importantly, the use of inadequate turbulence modelling. using for example a k-${\varepsilon}$ model, it is necessary to introduce substantial modifications. Therefore simulation resolved in this study, were carried out using the DELFT-3D-MOR programme, which is part of the DELFT3D software package of WL/Delft Hydraulics and In this study, apply a two-dimensional depth-averaged model, taking an horizontal large eddy simulation(HLES). The bed morphology computed when using HLES, as well as the associated time-scale, is similar to what has been obseved in a field case. When using a mean-flow model with-out HELS, the bed morphology is less realistic and the morphological time-scale is much larger. This slow development is the result of neglecting(or averaging). the strong velocity fluctuations associated with the time-varying eddy formation.

Comparison of Mesoscale Eddy Detection from Satellite Altimeter Data and Ocean Color Data in the East Sea (인공위성 고도계 자료와 해색 위성 자료 기반의 동해 중규모 소용돌이 탐지 비교)

  • PARK, JI-EUN;PARK, KYUNG-AE
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.282-297
    • /
    • 2019
  • Detection of mesoscale oceanic eddies using satellite data can utilize various ocean parameters such as sea surface temperature (SST), chlorophyll-a pigment concentration in phytoplankton, and sea level altimetry measurements. Observation methods vary for each satellite dataset, as it is obtained using different temporal and spatial resolution, and optimized data processing. Different detection results can be derived for the same oceanic eddies; therefore, fundamental research on eddy detection using satellite data is required. In this study, we used ocean color satellite data, sea level altimetry data, and infrared SST data to detect mesoscale eddies in the East Sea and compared results from different detection methods. The sea surface current field derived from the consecutive ocean color chlorophyll-a concentration images using the maximum cross correlation coefficient and the geostrophic current field obtained from the sea level altimetry data were used to detect the mesoscale eddies in the East Sea. In order to compare the eddy detection from satellite data, the results were divided into three cases as follows: 1) the eddy was detected in both the ocean color and altimeter images simultaneously; 2) the eddy was detected from ocean color and SST images, but no eddy was detected in the altimeter data; 3) the eddy was not detected in ocean color image, while the altimeter data detected the eddy. Through these three cases, we described the difficulties with satellite altimetry data and the limitations of ocean color and infrared SST data for eddy detection. It was also emphasized that study on eddy detection and related research required an in-depth understanding of the mesoscale oceanic phenomenon and the principles of satellite observation.

Hydraulic Model Experiment on Circulation in Sagami Bay, Japan (IV) -Time-Varying States of Flow Pattern and Water Exchange in Baroclinic Rotating Model-

  • Choo, Hyo-Sang;Takasige Sugimoto
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.1
    • /
    • pp.57-73
    • /
    • 1999
  • Baroclinic hydraulic model experiments on the time-varying states of the flow pattern and water exchange in Sagami Bay were carried out based on quasi-steady state experiments on the flow pattern. For the model experiments, density changes as well as time changes in the volume transport of the upper layer were executed to investigate the flow response of the bay in the case of a sudden inflow of low density water and variable volume transport into the Sagami Bay. The results of the model experiments showed that when the volume transport was increased frontal eddies or frontal wave streamers from the Kuroshio Through Flow were transferred to the inner part of the bay along with cyclonic circulation in the bay. In addition, density boundary currents appeared and flowed along the eastern boundary of the bay. As the upper layer density decreased, frontal eddies, frontal streamers and coastal boundary density currents occurred and proceeded along the eastern boundary of the bay at a high speed.

  • PDF

Experimental Study on the Wall Jet Flow Induced by Impinging Circular Jet on Arotating Disk (충돌제트로 인한 회전원판 위의 벽제트유동에 관한 실험적 연구)

  • 강형석;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3386-3394
    • /
    • 1994
  • An experimental study has been performed on the flow over a rotating disk, where the diameter of the disk is 500 mm and the maximum vertical deviation of the upper surface is $50 \mu{m}$ for the whole range of the angular velocity up to 3400 rpm. The flow visualization experiment for the wall jet flow induced by impinging circular jet is carried out using schlieren system and measurements are made by 3-hole and 5-hole pitot tubes. Schlieren photographs show that as the rotating speed increases the wall jet flow becomes more stable and the size of the largest eddies becomes smaller. Measurements for impinging jet flow on the stationary disk verify the accuracy of the present experiment, and those for free rotating disk flow display the existence of transition region from laminar to turbulent flows. Measurements for impinging jet flow on the rotating disk exhibit the interaction between the wall jet and the viscous pumping effect, which explains the decay in size of turbulent eddies illustrated by the schlieren photographs.

Airflow modelling studies over the Isle of Arran, Scotland

  • Thielen, J.;Gadian, A.;Vosper, S.;Mobbs, S.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.115-126
    • /
    • 2002
  • A mesoscale meteorological model is applied to simulate turbulent airflow and eddy shedding over the Isle of Arran, SW Scotland, UK. Under conditions of NW flow, the mountain ridge of Kintyre, located upwind of Arran, induces gravity waves that also affect the airflow over the island. The possibility to nest domains allows description of the airflow over Arran with a very high resolution grid, while also including the effects of the surrounding mainland of Scotland, in particular of the mountain ridge of Kintyre. Initialised with a stably stratified NW flow, the mesoscale model simulates quasi-stationary gravity waves over the island induced by Kintyre. Embedded in the larger scale wave trains there is continuous development of small-scale transient eddies, created at the Arran hill tops, that move downstream through the stationary wave field. Although the transient eddies are more frequently simulated on the northern island where the terrain is more pronounced, they are also produced over Tighvein, a hill of 458 m on the southern island where measurements of surface pressure and 2 m meteorological variables have been recorded at intermittent intervals between 1996 and 2000. Comparison between early observations and simulations so far show qualitatively good agreement. Overall the computations demonstrate that turbulent flow can be modelled with a horizontal resolution of 70 m, and describe turbulent eddy structure on wavelength of only a few hundred metres.

INTERACTIONS WITH EDDIES IN THE UPSTREAM OF THE KUROSHIO AS SEEN BY THE HF RADAR AND ALTIMETRY DATA

  • Ichikawa, Kaoru;Tokeshi, Ryoko
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.969-972
    • /
    • 2006
  • The long-range High-Frequency (HF) ocean radar system has observed surface velocity field in the upstream of the Kuroshio north of Ishigaki Island and east of Taiwan since 2001. Applying a new method to extract geostrophic velocity component from the HF surface velocity data with the aid of satellite-born wind data, time series of daily surface geostrophic velocity field has been determined. Despite limited width of the study area of the HF radar, analysis of the sea surface height anomaly determined from the satellite altimetry data in a wider area can provide estimated dates of arrival of mesoscale eddies in the study area of the HF radar. Variations of the Kuroshio position and strength are studied in detail for these cases of interaction with mesoscale eddy, although number of occurrence of direct interaction with the Kuroshio in the study area is not statistically enough. For example, when an anticyclonic eddy approaches to the Kuroshio, the Kuroshio axis is found tend to move northward, keeping away from the approaching eddy from the east.

  • PDF

Structure and Characteristics of Diffusion Flame behind a Bluff-Body in a Divergent Flow(I) (확대유로내의 Bluff-Body 후류확산화염의 구조 및 특성 (1))

  • 최병륜;이중성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1269-1279
    • /
    • 1995
  • An experimental study is carried out on turbulent diffusion flames stabilized by a circular cylinder in a divergent duct flow. A commercial grade gaseous propane is injected from two slits on the rod as fuel. Flame stability limits, as well as size and temperrature of recirculation zone, are measured by direct and schlieren photographs to clarify the characteristics and structure of diffusion flames and to assess the effect of various divergent angle of duct. The results of the present study are as follows. Temperature in the recirculation zone decreases with increasing divergent angle. The blow-off velocity in parallel duct is higher than that in divergent duct. Critical blow-off velocity is expected to be about 8-12 degree through blow-off velocity pattern. Regardless of divergent angles, the length of recirculation zone is nearly constant, and this length becomes longer with rod diameter. Pressure gradient has an effect on the eddy structure in shear layer behind the rod. With the increase of divergent angle, large scale eddies by dissipated energy in shear layer are split into small scale eddies, and the flame becomes a typical distributedreacting flame.

Effects of the secondary flow on the turbulent heat transfer of a flat plate wake (2차유동이 평판후류의 난류열전달에 미치는 영향)

  • Kim, Hyeong-Su;Lee, Jun-Sik;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.417-427
    • /
    • 1998
  • The effect of secondary flow on the heat transfer of a turbulent wake generated by a flat plate was experimentally investigated. The secondary flow was induced in a curved duct in which the flat plate wake generator was installed. All three components of turbulent heat flux were measured in the plane containing the mean radius of curvature of the curved duct. The results showed that mean temperature profiles deviate from the similarity of the straight wake because of the cold fluid transported from the free-stream. The half-width of the mean temperature profile increased rapidly by upwash motion of the secondary flow. The changes to turbulence structure caused by the secondary flow show more pronounced effect on heat transport than on momentum transport. This is because the response to the variation of flow conditions is delayed in temperature field. Negative production of the turbulent heat flux is observed in the inner wake region. From the conditional averaging, it has been found that the negative production of the turbulent heat flux is generated due to a mixing process between the hot and low momentum eddies occupied in the inner wake region and the cold and high momentum eddies in the potential region.