• Title/Summary/Keyword: ecosystem monitoring

Search Result 500, Processing Time 0.025 seconds

Application of Enclosed Experimental Ecosystem to the Study on Marine Ecosystem (해양생태계 연구를 위한 폐쇄생태계의 활용)

  • 김웅서
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.3
    • /
    • pp.183-194
    • /
    • 2001
  • As researchers can modify environmental factors to fit the purpose of an experiment in monitoring marine ecosystem using enclosed experimental ecosystems, which is a strong advantage of them, mid-sized enclosed experimental ecosystems (mesocosm) are widely used in the world in basic ecology such as trophodynamic study and applied ecology such as the toxicity test of various chemicals and monitoring of ecosystem changes against marine pollution. Application of the mesocosm in the field has a merit to get more reliable result than that from the experiment in the laboratory. However, the result from the mesocosm study in marine ecosystem is very limited in Korea. Mesocosms which had been used in the marine ecological studies in both foreign countries and Korea were summarized, and application of them to the future study in various research field was suggested in this review paper.

  • PDF

A Preliminary Study on the Establishment of Background Levels and Management Targets in the Coastal Ecosystem of Korean Peninsula Using Outlier Test (이상치 검증을 이용한 한반도 연안생태계의 배경 농도 및 관리 항목 도출에 대한 예비 연구)

  • CHIN, BYUNG SUN;HWANG, IN SEO;KIM, YOUNG NAM;KOH, BYOUNG SEOL;YOO, JEONG KYU;JUNG, HOE IN;YEO, JUNG WON;WOO, SEUNG;PARK, GYUNG SOO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.170-186
    • /
    • 2019
  • The marine ecosystem survey investigates and analyzes multi-parameters at various times from various sites. Therefore, it is very difficult to analyze the complex ecological data of multi-items effectively, and it is more difficult to identify the current status and diagnose the problems of ecosystem through data analysis. Therefore, this paper aims to provide an example of interpretation of complex ecological data through analysis of distribution characteristics and outliers of ecological survey data. The main contents of the study are to elucidate the background levels of coastal ecosystem parameters considering the distribution characteristics of data, and to establish ecosystem monitoring indicators and an adaptive management system for the coastal waters in Korean Peninsula. The data used in this paper are based on the coastal ecosystem survey of the National Marine Ecosystem Monitoring Program conducted by the Ministry of Oceans and Fisheries (MOF) and the Korea Marine Environment Management Corporation (KOEM), and the major citations are from year 2015 to 2017. This article is a preliminary study to establish the above processes and the final result will be derived in 2020 when the coastal ecosystem survey is completed three times along the Korean coast.

Monitoring of Detention Basin after Restoration at Joogyo Creek (주교천 천변저류지의 사후 모니터링)

  • Kim, Ki Heung;Lee, Hyeong Rae;Kim, Cheol Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.3
    • /
    • pp.177-194
    • /
    • 2011
  • In order to assess ecologically for the restored detention basin in Joogyo creek, this study carried out a monitoring on the ecosystem of the detention basin. The study site was a small detention basin with an area $6,350m^2$, which had been established in March, 2004. The monitoring started in August and November, 2007. Terrestrial, riparian, and aquatic plants species have increased about 2 times at detention basin compared to that of streamside. Mammals, birds, reptiles, amphibians, aquatic insects and crustaceans were found more in species at detention basin, and especially there were a lot of more fish species. From the results, it seemed that various terrestrial, riparian, and aquatic ecosystem were made in the small detention basin.

Floral Changes During Three Years After Cheonggyecheon Restoration (청계천 복원 후 3년간 식물상 변화)

  • Kim, Hyeong-Guk;Koo, Bon-Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.107-115
    • /
    • 2010
  • This study was surveyed to identify changes of flora during three years after restoration in Cheonggyecheon stream. There are four sections in Cheonggyecheon. One and two sections are upper streams and three and four sections are down streams. It was surveyed 328 species in 2006. In 2007 and 2008, 446 and 444 species were found, respectively. This result shows that Cheonggyecheon is unstable initial condition in restored stream ecosystem. Naturalized species were 58 species in 2006 and it was respectively 61 and 63 species in 2007 and 2008. Hazard species of ecosystem were three common species during survey period. In appearance of flora per section, three and four sections constituted by natural sites such as point bars, wide flood plains, riffles and ponds, marshes, etc. were surveyed more species than one and two constructed by concrete materials and narrow flow channel. Recently, as time goes by, introduced species are being increased. And succession has mainly been progressed by one year or binary herbs and perennial herbs. Compared with other restored streams, Cheonggyecheon showed more flora than Yangjaecheon and Anyangcheon. It is judged owing to length of surveyed site, various planted species and area of inhabitation space. To manage restored stream ecosystem, monitoring is essential. Further, because change of vegetation after restoration in Cheonggyecheon is very important, continuous monitoring about Flora and Naturalized species and Hazard species of ecosystem is also very important.

Environmental Specimen Bank and Ecosystem Assessment

  • Kim, Myungjin;Kim, Jiyeon;Cho, Yongjoo;Yoo, Byungho
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.429-434
    • /
    • 2009
  • Environmental specimen bank (ESB) is a new tool to assess ecosystem in environmental impact assessment (EIA). ESB looks at changes in the concentration of pollutants in human and environmental specimens over long periods of time through retrospective analysis of archived samples. Korea started to design its National Environmental Specimen Bank (NESB) in 2007 and planned to launch an operational pilot project by 2010. NESB prepares five Standard Operating Procedures (SOPs) of shoots of Red and Korean pine, leaves of Mongolian oak, Pigeon's egg, and Common carp's muscle out of 14 planned specimens in 2009. ESB contributes to monitoring the effectiveness of EIA projects and policies by providing a time capsule through ecosystem assessment of representative species. This study reviews ecosystem assessment in EIA and the ESB establishment in Korea and probes NESB applications in ecosystem assessment.

Application of SOPs (Standard Operating Procedures) in National Environmental Specimen Bank (국가환경시료은행의 표준운영절차 적용)

  • Kim, Myungjin;Lee, Jangho;Choi, Taeyoung;Han, Areum;Song, Kyohong;Lee, Eugene;Lee, Jongchun
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.2
    • /
    • pp.327-338
    • /
    • 2012
  • Environmental specimen banks provide the baselines for the scientists and decision makers to do research using the past and present specimens to expect the possible contaminant implications of the future. Many chemicals that are considered harmless now but not found may be found and pose threats in the future. Collected specimens of animals and plants should be conserved without contamination for future analysis. To ensure the availability of samples for the retrospective analysis, the establishment and maintenance of specimen banks in the developing and developed nations has become absolutely necessary. National Environmental Specimen Bank (NESB) established at National Institute of Environmental Research (NIER) in 2009. For the application of NESB, several activities such as standard operating procedures (SOPs) development have been prepared. This study applied the guidelines for sampling and sample treatment of five environmental specimens which had been prepared from 2007 to 2009. The target species were shoots of red pine and Korean pine, leaves of Mongolian oak, eggs of domestic pigeon and muscles and livers of common carp. The NESB will enhance the quality of environmental assessment and environmental monitoring based on real time and retrospective analysis.

Issue Difference of Ecosystem Service Demand and Supply through Text Mining Analysis: Case Study of Shiheung using Complaints and Urban Planning Materials (텍스트 마이닝 분석을 통한 생태계서비스 수요-공급의 이슈 차이분석 - 시흥시 민원과 도시계획 자료를 활용하여 -)

  • Lee, Jae-hyuck;Park, Hong-jun;Kim, Il-kwon;Kwon, Hyuk-soo
    • Journal of Korean Society of Rural Planning
    • /
    • v.24 no.3
    • /
    • pp.63-71
    • /
    • 2018
  • The comparison of demand and supply is needed for efficient ecosystem services planning. However, the gap between them cannot be analyzed as existing studies mainly dealt with only the supply of ecosystem services. This study compares the demand and supply of ecosystem services in Shiheung using environmental complaints and urban planning by semantic network analysis. As a result, 'air' and 'water' quality are magnified in demand, 'energy' and 'water' are crucial in supply. This result presents that citizen ask for the improvement of air quality in regulation services, although local government has plans for energy support in provisioning services. Periodic ecosystem services demand and supply monitoring will be the base of effective ecosystem services planning, which reduce insufficiency and surplus.

Landscape Scale Ecosystem Assessment Modelling Using Spatial Pattern Analysis of GIS: A Case Study of Yongin, Korea (GIS 공간유형분석 모형을 이용한 경관 규모 생태계의 평가기법)

  • 손학기;김원주;박종화
    • Spatial Information Research
    • /
    • v.8 no.2
    • /
    • pp.233-241
    • /
    • 2000
  • The objective of this study were to develop landscape scale ecosystem assessment model, and apply the model for the assessment of the state and change of ecosystem of the study area, Yongin, Korea. Since natural ecosystem of the site has been deteriorated significantly during recent extensive residential development, it is essential to correctly assess ecosystem of the study site. Traditional ecosystem assessment mainly utilizing intensive field survey requires high cost, but the outcome rarely represents spatial pattern of the regional ecosystems. Ecosystem assesment of landscape scale based on landscape ecology can resolve most of the shortfalls of the traditional approach. The research method can be summarized as follows. First, extensive literature review on such topics as spatial pattern of ecosystem, ecosystem assessment of landscape scale, ecological analysis was carried out. Second, a model for the ecosystem assessment of landscape scale emphasizing spatial pattern of ecosystem was developed. This model evaluates three indicators; ecological integrity and biological diversity, watershed integrity, and landscape resilience of 11 watersheds in the study area. Finally, ecological assessment utilizing two sets of indicators, enhancement of and disturbance of ecosystem stability, was carried out. This assessment method is based on Environmental Monitoring and Assessment Program´s Landscape component(EMAP-L) of EPA(1994). The results of this study are as follows. First, the ecosystem assessment of landscape scale of the study area of Yongin, Korea, showed that escosystems of Tanchun01 and Chungmichun01 watersheds had the worst state in the study site in 1991. On the other hand, the ecosystems of Jinwechun01, Kyunganchun02, and Bokhachun01 watersheds had the most stable ecosystem in 1991. Second, ecosystems of Tanchun01, Shingal reservoir, and Kyunganchun01 watersheds were evaluated to be the worst state in the study site in 1996. And, ecosystems of Jinwechun01 and Gosam reservoir watersheds had the most stable ecosystem. Third, ecosystem of Tanchun01 watershed which incudes Suji residential development project site changed the most drastically between 1991 and 1996. The ecosystem of the watershed the most drastically deteriorated due to it´s proximity to Seoul and Bundang new town.

  • PDF