• Title/Summary/Keyword: ecosystem modeling

Search Result 170, Processing Time 0.029 seconds

A Study on Business Ecosystem Model for Technology Commercialization: Focused on Its Application to Public R&D Commercialization (기술사업화의 비즈니스 생태계 모형에 관한 연구: 공공 연구개발성과 사업화에의 적용을 중심으로)

  • Park, Wung;Park, Ho-Young
    • Journal of Korea Technology Innovation Society
    • /
    • v.17 no.4
    • /
    • pp.786-819
    • /
    • 2014
  • Emphasizing the importance of R&D as a source of open innovation, Korean government is developing various programs focused on technology commercialization and is expanding investment on it. In spite of those efforts, technology commercialization is not vitalized yet due to the lack of demand for technology transfer, R&D planning scheme without considering market, immaturity of technology market, and so on. This study aims to suggest the business ecosystem model so that technology commercialization could be facilitated based on business ecosystem perspective. We set the framework for modeling a business ecosystem through reviewing the previous works, and draw several problems to be solved regarding public R&D commercialization in Korea from the perspective of ecosystem. Considering those, this research proposes the business ecosystem model for public R&D commercialization as a reference model for describing, discussing, and developing the technology commercialization strategy. The proposed model consists of 4 domains as follows: R&D, technology market, information distribution channels, and customers. The business ecosystem model shows that technology commercialization could be facilitated to create the market value through close relationship and organic cooperation among its members that form the ecosystem. Public research institutes as a keystone player could control the fate of the ecosystem. In this regard, this paper suggests roles of public research institutes for evolving the business ecosystem.

GIS Data Modeling Plan for Tidal Power Energy Development in Incheon Bay of Korea (인천만 조력에너지 개발을 위한 GIS 데이터모델링)

  • Oh, Jung-Hee;Choi, Hyun-Woo;Park, Jin-Soon;Lee, Kwang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.166.2-166.2
    • /
    • 2011
  • Incheon Bay of Korea is one of the most famous regions for high tidal range. Ministry of Land, Transport and Maritime Affairs(MLTM) has implemented preliminary investigation for tidal power energy development in this area since 2006. Through field observations, various kinds of marine data consisting of depth and geography, marine weather, tidal currents, wave, seawater characteristics, geology, marine ecosystem and marine environment were gathered. To use these data efficiently for the determining of feasibility of developing and appropriateness of project scale, spatial data management and application system is essential. Therefore, in this study, the concept, methodology and procedure of spatial data modeling are defined for tidal energy development. Spatial data modeling consists of essential model relating to tidal energy directly and optional model including environmental factors. Essential model is composed with fundamental elements like as depth, geography, and several numerical modeling results(tide, tidal current, wave).

  • PDF

Spatial Analyses and Modeling of Landsacpe Dynamics (지표면 변화 탐색 및 예측 시스템을 위한 공간 모형)

  • 정명희;윤의중
    • Spatial Information Research
    • /
    • v.11 no.3
    • /
    • pp.227-240
    • /
    • 2003
  • The primary focus of this study is to provide a general methodology which can be utilized to understand and analyze environmental issues such as long term ecosystem dynamics and land use/cover change by development of 2D dynamic landscape models and model-based simulation. Change processes in land cover and ecosystem function can be understood in terms of the spatial and temporal distribution of land cover resources. In development of a system to understand major processes of change and obtain predictive information, first of all, spatial heterogeneity is to be taken into account because landscape spatial pattern affects on land cover change and interaction between different land cover types. Therefore, the relationship between pattern and processes is to be included in the research. Landscape modeling requires different approach depending on the definition, assumption, and rules employed for mechanism behind the processes such as spatial event process, land degradation, deforestration, desertification, and change in an urban environment. The rule-based models are described in the paper for land cover change by natural fires. Finally, a case study is presented as an example using spatial modeling and simulation to study and synthesize patterns and processes at different scales ranging from fine-scale to global scale.

  • PDF

Review of Features and Applications of Watershed-scale Modeling, and Improvement Strategies of it in South-Korea (유역 모델 특성 및 국내 적용 현황과 발전 방향에 대한 검토)

  • Park, Youn Shik;Ryu, Jichul;Kim, Jonggun;Kum, Donghyuk;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.592-610
    • /
    • 2020
  • In South Korea, the concept of water environment was expanded to include aquatic ecosystems with the Integrated Water Management implementation. Watershed-scale modeling is typically performed for hydrologic component analysis, however, there is a need to expand to include ecosystem variability such that the modeling corresponds to the social and political issues around the water environment. For this to be viable, the modeling must account for several distinct features in South Korean watersheds. The modeling must provide reasonable estimations for peak flow rate and apply to paddy areas as they represent 11% of land use area and greatly influence groundwater levels during irrigation. These facts indicate that the modeling time intervals should be sub-daily and the hydrologic model must have sufficient power to process surface flow, subsurface flow, and baseflow. Thus, the features required for watershed-scale modeling are suggested in this study by way of review of frequently used hydrologic models including: Agricultural Policy/Environmental eXtender(APEX), Catchment hydrologic cycle analysis tool(CAT), Hydrological Simulation Program-FORTRAN(HSPF), Spatio-Temporal River-basin Ecohydrology Analysis Model(STREAM), and Soil and Water Assessment Tool(SWAT).

Ecological Modeling for Estimation of Environmental Characteristics in Masan Bay

  • Kim, Dong-Myung
    • Journal of Environmental Science International
    • /
    • v.12 no.8
    • /
    • pp.841-846
    • /
    • 2003
  • The ecosystem model was applied to estimate the regional distribution of the net production(or consumption) of phytoplankton and the net uptake(or regeneration) rate of nutrients in Masan Bay for scenario analysis to find a proper management plan. At the surface level, net production of phytoplankton is 200 mgC/㎡/day at the entrance of the bay, and 400∼1000 mgC/㎡/day at the center of the bay. The inner area of the bay showed more than 2000 mgC/㎡/day. All areas of the bottom level have a net consumption, with the center of the bottom level showing more than 600 mgC/㎡/day. For dissolved inorganic nitrogen, the results showed a net uptake rate of 100∼900 mg/㎡/day at the surface level. It showed that the net regeneration is above 50 mg/㎡/day at the bottom level. For dissolved inorganic phosphorus, the net uptake rate showed 10.0∼80.0 mg/㎡/day at the surface level, and the regeneration rate showed 0∼20.5 mg/㎡/day at the bottom level. Therefore, in order to control the water quality in Masan Bay, it is important to consider the re-supplement of nutrients regenerated in the water column.

A comparative study on the estimation methods for the potential yield in the Korean waters of the East Sea (한국 동해 생태계의 잠재생산량 추정방법에 관한 비교 연구)

  • LIM, Jung-Hyun;SEO, Young-Il;ZHANG, Chang-Ik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.2
    • /
    • pp.124-137
    • /
    • 2018
  • Due to the decrease in coastal productivity and deterioration in the quality of ecosystem which result from the excessive overfishing of fisheries resources and the environmental pollution, fisheries resources in the Korean waters hit the dangerous level in respect of quantity and quality. In order to manage sustainable and effective fisheries resources, it is necessary to suggest the potential yield (PY) for clarifying available fisheries resources in the Korean waters. So far, however, there have been few studies on the estimation methods for PY in Korea. In addition, there have been no studies on the comparative analysis of the estimation methods and the substantial estimation methods for PY targeted for large marine ecosystem (LME) For the reasonable management of fisheries resources, it is necessary to conduct a comprehensive study on the estimation methods for the PY which combines population dynamics and ecosystem dynamics. To reflect the research need, this study conducts a comparative analysis of estimation methods for the PY in the Korean waters of the East Sea to understand the advantages and disadvantages of each method, and suggests the estimation method which considered both population dynamics and ecosystem dynamics to supplement shortcomings of each method. In this study, the maximum entropy (ME) model of the holistic production method (HPM) is considered to be the most reasonable estimation method due to the high reliability of the estimated parameters. The results of this study are expected to be used as significant basic data to provide indicators and reference points for sustainable and reasonable management of fisheries resources.

Estimation of Ability for Water Quality Purification Using Ecological Modeling on Tidal Flat (생태계 모델을 이용한 갯벌의 수질정화능력 산정)

  • Shin, Bum-Shick;Kim, Kyu-Han
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.42-49
    • /
    • 2007
  • It has been known that shallow-water regions, such as tidal flats, sea grass and sea weed beds have water purification capability, and they also serve as nursery grounds for many fishes. On the other hand, tidal flat areas are economically attractive sites for reclamation, to be used for developing industries. When developing shallow-water areas, we have to propose a plan to mitigate the environmental impact associated with such a development plan. However, it is difficult to estimate the affects on the ecosystem and water purification, and the literature related to this matter is insufficient. In order to evaluate the ability of coastal tidal flat and to predict the future changes, it is necessary to develop a reliable prediction technique and construction of data by using a field investigation. In this study, we carried out a numerical model test for the tidal flat ecosystem, using the pelagic system and the benthic system, simultaneously, in order to show a change in the tidal flat ecosystem. The flow of nitrogen, phosphorus and carbon has been identified as a primary consideration of marine ecosystem components, and the capability of water purification and the change of the tidal flat were predicted using this flow. In order to make a more reliable prediction, a field investigation to determine tide, current and creatures of the object coastal area has been done. The purification capability of this shallow-water region is estimated from the model results. According to the results of experiments, the tidal flat has a capability of water purification (Sink) of 11mgN/m2/day, but the other area has a load (Source) of 20mgN/m2/day. As a result, we could confirm that the tidal flat of an object coastal area plays an important role in water purification.

Water Quality Modeling and Response Assessment in the Yellow Sea and the East China Sea (황해 및 동중국해의 수질예측과 응답성 평가)

  • Lee, Dae-In
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.445-460
    • /
    • 2012
  • In order to evaluate and predict the environmental impact of the low-trophic-level ecosystem to environmental changes in the Yellow Sea and the East China Sea, an ecological modelling study was undertaken. Simulation results of average distribution patterns and concentrations of water quality factors during the summer by the model were acceptable. Phytoplankton and remineralization rate of organic matter were very important parameters by a sensitivity analysis. Water quality factors showed high values in the estuary of the Yangtze River and in the West and South Sea of Korea and low values in the central area of the Yellow Sea. There is a plume of high values, especially nutrients, off the mouth of the Yangtze that expands or contracts with changes in the discharge strength. Characteristics of responses of water quality factors vary for different scenarios of environmental change, such as land-based pollution sources and atmospheric forcing. It is suggested that changes of light intensity, discharges of input sources, and wind play an important role in the marine ecosystem.

Preliminary Diagnosis for Pulsing Simulation of Low Trophic Ecosystem by Environmental Changes in Coastal Area (연안해역의 환경변화에 따른 저차 생태계 Pulsing Simulation 예비 진단)

  • Lee, Dae-In
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.461-468
    • /
    • 2012
  • In general, long-term changes of ecological factors take a pulse form in which they interact with other factors and go through a repeated increasing and decreasing cycle. The coupling of the two approaches the grid model and the box model in ecological modeling can lead to an in-depth understanding of the environment. The study analyzes temporal variations of major storages with an energy system model that formulizes effectively the relationships among nutrients, phytoplankton, and zooplankton in the Yellow Sea and the East China Sea. An increase of light intensity and standing stock of nutrient increase the magnitude and frequency of pulsing. Also, an immense reduction of nutrient concentration can cause extinction of the pulsing and bring about a steady state. It is concluded that the nutrient loads in freshwater discharge from the Yangtze affect the cycles of major ecological components as well as water quality variables and play an important role in the marine ecosystem.