• 제목/요약/키워드: eco-friendly technology

검색결과 1,085건 처리시간 0.03초

DME 커먼레일 차량의 윤활향상제에 관한 연구 (A Study on Lubricant additive of DME Common-rail Vehicle)

  • 박정권;김현철;정수진;전문수
    • 융복합기술연구소 논문집
    • /
    • 제3권1호
    • /
    • pp.15-18
    • /
    • 2013
  • The next generation alternative fuel of diesel, DME (Dimethyl Ether) discharges particulate matter hardly due to chemical structural as oxygen-fuel so it has the eco-friendly property. Despite these advantages, the DME has the technical difficulties to apply to the diesel engine because of a low calorific value, viscosity and compressibility effects. From this point of view, we performed experimental studies on improved reliability of DME common-rail vehicle and lubricity enhancement of DME fuel for empirical distribution of eco-friendly DME fuel. Also we analyzed solubility of lubrication enhancer according to a drop in temperature, try to secure reliability about core parts of DME vehicle by applying lubrication enhancer in the DME common-rail vehicle.

  • PDF

지하매설 수소 배관망 안전 모니터링 시스템의 개념 설계: 광섬유 기반 모니터링 사례를 중심으로 (Conceptual Design for Underground Hydrogen Pipeline Monitoring System: Case Study on Fiber Optic Sensing)

  • 박재우;염동준
    • 한국산업융합학회 논문집
    • /
    • 제25권4_2호
    • /
    • pp.673-686
    • /
    • 2022
  • Recently, as the importance of eco-friendly energy has increased hydrogen gas is in the spotlight as future energy. Due to its special properties, hydrogen gas is more difficult to detect requiring more precise sensing technology. The primary objective of this study is to design a concept of an underground hydrogen pipeline monitoring system. For this, the following research works are conducted sequentially; 1)selection of core technology for conceptual design, 2)state-of-the-art review, 3)design of a concept of the system. As a result, DAS(Distributed Acoustic Sensing), and DTS(Distributed Temperature Sensing) are selected as each core technology. Furthermore, a conceptual design of an underground hydrogen pipeline monitoring system is deducted. It is expected that the impact on the eco-friendly energy industry will be enormous due to the increasing interest in using hydrogen energy.

Eco-Friendly Light Emitting Diodes Based on Graphene Quantum Dots and III-V Colloidal Quantum Dots

  • Lee, Chang-Lyoul
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.65-65
    • /
    • 2015
  • In this talk, I will introduce two topics. The first topic is the polymer light emitting diodes (PLEDs) using graphene oxide quantum dots as emissive center. More specifically, the energy transfer mechanism as well as the origin of white electroluminescence in the PLED were investigated. The second topic is the facile synthesis of eco-friendly III-V colloidal quantum dots and their application to light emitting diodes. Polymer (organic) light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nanomaterial without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence (EL) from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions. (Sci Rep., 5, 11032, 2015). New III-V colloidal quantum dots (CQDs) were synthesized using the hot-injection method and the QD-light emitting diodes (QLEDs) using these CQDs as emissive layer were demonstrated for the first time. The band gaps of the III-V CQDs were varied by varying the metal fraction and by particle size control. The X-ray absorption fine structure (XAFS) results show that the crystal states of the III-V CQDs consist of multi-phase states; multi-peak photoluminescence (PL) resulted from these multi-phase states. Inverted structured QLED shows green EL emission and a maximum luminance of ~45 cd/m2. This result shows that III-V CQDs can be a good substitute for conventional cadmium-containing CQDs in various opto-electronic applications, e.g., eco-friendly displays. (Un-published results).

  • PDF

농촌 친환경 주거 개발을 위한 이엉지붕 열환경 특성 분석 -신석기시대 이엉지붕 움집을 대상으로- (Analysis of the Thermal Environment Characteristics of Thatched Roof for Eco-friendly Rural Housing Development -Focused on the Neolithic Thatched Roof Dugout Hut-)

  • 송헌
    • 한국농촌건축학회논문집
    • /
    • 제16권1호
    • /
    • pp.35-42
    • /
    • 2014
  • Due to the development of civilization, the humans is privileged the rich of technologies for housing thermal environment. But, this kind of technological development caused enough trouble of energy excessive consumption. For solve this problem, many researchers strive to exploit the low energy sustainable techniques. For such a reason, the eco-friendly techniques of vernacular house are resurfacing. These traditional techniques are applied to a development of eco-friendly modern housing. They are no longer recognized as outdated products. On this context, this study proposes an scientific analysis on the thermal environment characteristics of Neolithic thatched-roof dugout hut(Um house). So far the several studies have been carried out in viewpoint of the history and structural compositions of the Um house which has been used as the normal housing for about 1000 years in the Neolithic era, however the thermal characteristics analysis of the Um house has never been studied. Um house is not a housing which has been composed by the scientific analysis or architectural design technology, but evolved empirically over a long period. This study on the thermal environment characteristics of Um house would provide basic information for the development of korean eco-friendly rural housing by korean climate characteristics. In this study, the thermal environmental characteristics of the Um house in the Neolithic era was analysed experimentally. The results of this study could be summarized as follows: 1. When the solar insolation and the ambient temperature in the daytime were $420W/m^2$ and $17^{\circ}C$ respectively, the surface temperature of the Um house roof covered with the rice straw was $37^{\circ}C$ and that in the roof $32^{\circ}C$, and in the conditions above the air temperature in the room was $15^{\circ}C$. 2. When the ambient relative humidity was 40%, that in the room of the Um house 50%, and at the ambient relative humidity of 90~100%, that in the room was 60%. 3. Through the experimental analysis, it was verified that the enthalpy and relative humidity is in an inverse relationship. 4. In general the comfort degree in the living space is changed with the seasonal climate, also in this study, the comfort degree in the room of the Um house in October and November was higher than that in May and June.

토양생태 등급 정보가 친환경도로노선 선정에 미치는 영향에 관한 민감도 분석 (Sensitivity Analysis of the Effect of Soil Ecological Quality Information in Selecting Eco-Friendly Road Route)

  • 기동원;강호근;이상은;허준;박준홍
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제13권3호
    • /
    • pp.37-44
    • /
    • 2008
  • 국토개발사업의 사전 계획 과정에서 개발할 것인지 보전할 것인지에 대한 의사결정은 인간 활동에 영향을 줄 수 있는 편리함과 이익을 고려해야 할 뿐만 아니라, 자연환경생태에 미칠 수 있는 영향을 종합적으로 예측하고 평가할 수 있는 자료기반 및 통합적 평가기법을 요구한다. 동식물생태와 지형경관요소들은 환경부의 생태자연도를 통해서 환경영향평가에 현재 활용되고 있지만, 자연생태의 주요 구성요소 중 하나인 토양생태는 정량적인 자료와 지형정보와 연계된 정보의 부재로 환경영향평가에서 고려되지 못하고 있다. 본 연구에서는 토양생태를 포함한 자연환경과 생활환경 요소들을 망라해서 총체적 환경성을 평가할 수 있는 수치지도를 작성하고 토양생태 등급의 가중치가 친환경도로 노선 선정에 미치는 영향에 대해서 민감도 분석을 수행하였다. 그 결과 자연환경 요소들 중 토양생태의 가중치가 14% 이상 만 되어도 최적 친환경노선 선정에 민감하게 영향을 미쳤다. 본 연구의 결과를 통해서 이제까지 환경영향 평가에서 무시되어 오던 토양생태 정보가 친환경 건설개발사업의 계획 및 기초설계 단계에서 중요하게 고려되어야 할 생태요소임을 입증할 수 있었다.

친환경 스마트 선박 인력 수요예측에 관한 연구 (A Study on Forecasting of the Manpower Demand for the Eco-friendly Smart Shipbuilding)

  • 신상훈;신용존
    • 한국항만경제학회지
    • /
    • 제39권2호
    • /
    • pp.1-13
    • /
    • 2023
  • 이 연구는 IMO의 환경규제와 4차산업 혁명 기술의 확산에 따라 그중요성과 비중이 확대되고 있는 친환경 스마트 선박의 성장에 필요한 인력 수요를 통계청의 2000년~2020년의 조선산업 인력자료를 기반으로 예측하였다. 추세분석과 시계열분석의 다양한 모델을 적용하여 조선산업의 인력 수요를 예측하고 최근 5년간의 실적치와 비교하여 기하평균을 적용한 단순평균법이 예측 오차가 유의적으로 가장 적은 것으로 평가되었다. 그리고 산업통상자원부의 친환경 스마트 선박 분야의 2018년과 2020년의 인력현황 설문조사 결과를 바탕으로 조선산업 인력 증가추이를 반영하여 인력 수요를 예측하였다. 조선산업의 인력수요 예측치에 친환경 스마트 선박부분의 인력 증가수치를 반영하여 인력 수요를 예측한 결과, 2025년 62,001명, 2030년 85,035명으로 증가하는 것으로 예측되었다. 본 연구는 고부가가치 친환경 스마트 선박 분야에 필요한 인력 수요를 통계자료에 기반하여 객관적으로 예측함으로써, 향후의 인력 수요에 대응한 적절한 전문인력의 양성 및 공급 방안 수립에 기여하게 될 것으로 평가된다.

영상분석을 통한 바이오폴리머로 보강된 제방사면 안정성 해석 (Assessment of Levee Slope Reinforced with Bio-polymer by Image Analysis)

  • 고동우;강준구
    • Ecology and Resilient Infrastructure
    • /
    • 제6권4호
    • /
    • pp.258-266
    • /
    • 2019
  • 이 연구는 자연에 기반을 둔 하천기술을 제방에 적용하여 그 효과를 평가하기 위해 수행되었다. 친환경 신소재 바이오폴리머를 제체 표면에 적용하여 내구성과 친환경성을 증진시킴과 동시에 월류에 대응하기 위한 제방의 보강 대책을 수립하고자 하였다. 안동하천연구센터에 현장토를 사용하여 높이 1 m, 마루 폭 3 m, 사면경사 1:2, 총 길이 5 m의 중규모 제방모형을 제작하였으며, 바이오폴리머와 흙을 적정 비율로 혼합한 바이오-소일 (bio-soil)을 제방 전면에 5 cm 두께로 도포하여 월류 발생에 대한 제방의 안정성 평가 실험을 수행하였다. 영상분석 프로그램을 이용한 픽셀기반 분석 기법을 적용하여 시간에 따른 제방사면의 붕괴면적을 산정하였으며 그 결과, 신소재 적용 제방의 경우 완전붕괴가 발생하는 시간은 일반 흙 제방에 비해 12배 이상 증가해서 붕괴지연효과가 상당히 높은 것으로 나타났다.

친환경 소재로 형성된 듀얼 펌프캡 용기의 낙하충격 시뮬레이션 분석 (An analysis on the drop impact simulation of dual pump cap container made of eco-friendly materials)

  • 위은찬;고민성;김현정;이중배;김민수;이주형;공정식;백승엽
    • Design & Manufacturing
    • /
    • 제15권1호
    • /
    • pp.57-65
    • /
    • 2021
  • Pump cap is a product that is widely used due to its ease of use and simple operation. These pump caps are applied to heterogeneous functional cosmetics and are being developed as dual pump caps. However, the conventional dual pump cap has a problem in that it is inconvenient to use and leakage occurs. In addition, it is formed of a plurality of materials, and there is a problem that is difficult to recycle. Lately, since the problem of environmental pollution is getting serious, the dual pump cap, which is difficult to recycle, cannot be used. Currently, eco-friendliness has been considered in Korea, and there are no dual pump cap containers with excellent sealing performance. Therefore, in this study, a dual pump cap container made of eco-friendly material was designed. In addition, finite element analysis was performed to verify the design feasibility of the product.

ABS 수지상의 도금층 형성을 위한 에칭 방법 연구 (Study of Etching Method for Plating Layer Formation of ABS Resin)

  • 최경수;최기덕;신현준;이상기;최순돈
    • 한국표면공학회지
    • /
    • 제47권3호
    • /
    • pp.128-136
    • /
    • 2014
  • In the present study, we successfully developed an eco-friendly chemical etching solution and proper condition for plating on ABS material. The mechanism of forming Ni plating layer on ABS substrate is known as following. In general, the etching solution used for the etching process is a solution of chromic acid and sulfuric acid. The etching solution is given to the surface resulting in elution of butadiene group, so-called anchor effect. Such a rough surface can easily adsorb catalyst resulting in the increase of adhesion between ABS substrate and Ni plating layer. However a use of chromic acid is harmful to environment. It is, therefore, essential to develop a new alternative solution. In the present study, we proposed an eco-friendly etching solution composed of potassium permanganate, sulfuric acid and phosphoric acid. This solution was testified to observe the surface microstructure and the pore size of electrical Ni plating layer, and the adhesive correlation between deposited layers fabricated by electro Ni plating was confirmed. The result of the present study, the newly developed, eco-friendly etching solution, which is a mixture of potassium permanganate 25 g/L, sulfuric acid 650ml/L and phosphoric acid 250ml/L, has a similar etching effect and adhesion property, compared with the commercially used chromium acid solution in the condition at $70^{\circ}C$ for 5 min.