• Title/Summary/Keyword: eco-friendly insulation

Search Result 77, Processing Time 0.027 seconds

A basic study on the Eco-friendly elements evaluation of Hanok according to G-SEED -Focus on the Unjoru and Jinwondang- (녹색건축인증제(G-SEED)에 따른 한옥의 친환경 요소 평가에 관한 기초연구 -구례 운조루와 진원당을 중심으로-)

  • Choi, Hyung-Seok;Kim, Hark-Rae
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.17 no.1
    • /
    • pp.9-18
    • /
    • 2015
  • The purpose of this study is to analyze the usage of eco-friendly elements in Korean traditional architecture to evaluate Hanok(Unjoru and Jinwondang) according to Green Building Certification Criteria(G-SEED). The results of this study were as follows; Unjoru and Jinwondang was not enough to obtain certification points. From Site usage and Traffic category, Jinwondang gets more points than Unjoru. It's because Jinwondang is located in downtown Seoul, so it gets more points of traffic and neighborhood facility. From Energy and Environmental Pollution category, Jinwondang gets more points of energy performance than Unjoru, too. It's because Jinwondang secured insulation performance of wall and windows using insulator and glass. From Resources category, Unjoru gets more points than Jinwondang. It shows that modern Hanok was limited using natural resources. From Ecological Environments category, Jinwondang is located urban area, it's difficult to secure the open space, so Unjoru gets more points than Jinwondang. If Modern Honok installs a system that can getting point and secure insulation performance, it will be certificated according to G-SEED.

Technology trends in mushroom mycelium utilization: Focus on patents until the first half of 2023 (버섯 균사체 활용기술 동향: 2023년 상반기까지의 특허를 중심으로)

  • Yong-Hyeon Jeong;Yuanzheng Wu;Jishun Li;Hyun-Jae Shin
    • Journal of Mushroom
    • /
    • v.21 no.3
    • /
    • pp.83-87
    • /
    • 2023
  • The importance of biocomposites has increased owing to the changes in global consumption trends and rapid climate change. Technologies using mushroom mycelium cultivation, and molding methods for mycelial application have gained attention as potential strategies for producing eco-friendly composites. Currently, mushroom mycelia are used as raw materials for food and cosmetics; however, research on their utilization as biocomposite materials is limited. Therefore, the potential for the development of mushroom mycelium-related products and technologies is high. This review analyzes the domestic and international patent application trends related to the technologies for composite (packaging, insulation, adhesives, and leather) and food (substitute for meat) materials using mushroom mycelium, as an eco-friendly biocomposite material, to provide objective patent information that can further research and development (R&D) in this field.

A Study on the Surface Discharge Characteristics by Dielectric Constant and Diameter of Solid Dielectrics to Improve Surface Dielectric Strength in Eco-Friendly Insulation Gas (친환경 절연가스 중 연면절연성 향상을 위한 고체유전체의 유전율과 지름에 따른 연면방전특성 연구)

  • Lim, Dong-Young;Min, Gyeong-Jun;Park, He-Rie;Choi, Eun-Hyeok;Choi, Sang-Tae;Park, Won-Zoo;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.1
    • /
    • pp.85-91
    • /
    • 2013
  • This paper studied surface discharge characteristics by a dielectric constant and diameter of solid dielectrics in $N_2/O_2$ mixture gas. Applied electric field strength at $N_2/O_2$ mixture gas was changed from the dielectric constant and diameter of the solid dielectrics, and insulation performance of the $N_2/O_2$ mixture gas determined surface discharge voltage. In each of the diameter at the solid dielectrics, the surface discharge voltage was increased by lengthening surface distance, whereas increasing rate of the surface discharge voltage was different from gas pressure. Thus, In this paper, main factors of surface discharge are as follows. 1) Insulation performance of $N_2/O_2$ mixture gas, 2) Dielectric constant of solid dielectrics, 3) Surface discharge path. It was clear that the surface discharge voltage depend on the main factors. These results will be applied to useful data for an eco-friendly composite insulation design.

A Study on the ecological design elements of elementary school interior - Focused on the elementary schools of Osaka, Japan and Busan, Korea - (초등학교 실내공간 디자인의 환경친화적 특성에 관한 연구 - 부산시와 오사카시 초등학교 사례를 중심으로 -)

  • Yun Ji-Young;Song Ju-Eun
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.3 s.50
    • /
    • pp.46-54
    • /
    • 2005
  • This study explored how the elementary schools provided proper interior environments to the students in terms of ecological aspects. 14 cases-7 in Busan and 7 in Osaka which were newly built or remodelled since 2000 were selected. These schools were analyzed based on the eco-school guideline suggested In the former study. The guideline categorizes into three parts: 1) energy efficiency related with lighting, ventilation, heating and insulation, 2) greening, 3) sustainability including recycling water system and use of environmentally friendly materials. The results showed that Korean schools require more systematic planning for natural lighting, ventilation, Insulation, greening and new water system while Japanese schools need use of environmentally friendly materials and consideration for natural lighting, insulation and interior greening. Especially, natural lighting and natural ventilation through roof window, atrium, wind tower and use of natural insulation and blind window system should be basically considered at the Initial planning. Also, this study reveals that ecological approach including greening and natural lighting with various architectural form should be applied in future elementary school design to make the school environment more agreeable and economical.

Technology of Electrical Barrier Material (전기차단성 소재 기술)

  • Shin, Eun-Mi
    • Elastomers and Composites
    • /
    • v.46 no.1
    • /
    • pp.22-28
    • /
    • 2011
  • Various materials are used as electrical barrier materials, such as glass, insulating oil, gas, paper and polymer. These materials shut off electricity from conductor as a barrier and separate as well as support conductor from outside environment while using electrical equipment. Polymers are generally used for cable insulation material. Recently environmental regulation are reinforced and eco-friendly materials are in trend.

Study on Insulation Diagnosis of Poor Contact between Electrode and Solid Insulator in Eco-Gas (친환경 가스 중 전극과 고체절연체의 불량접촉에 관한 절연진단연구)

  • Lim, Dong-Young;Choi, Eun-Hyeok;Bae, Sungwoo;Choi, Sang-Tae;Lee, Kwang-Sik;Choi, Byoung-Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.97-103
    • /
    • 2015
  • This paper presents the characteristics of partial discharge and radiated electromagnetic waves in the existence of a poor contact for the insulation diagnosis of eco-friendly power equipment. AC surface discharge experiment was conducted to simulate the poor contact between a hive voltage electrode (anode) and a solid insulator in $N_2/O_2$ mixture gas under a non-uniform field. The partial discharge voltage to be measured at 0.3MPa increased with the increase of the poor contact gap and was saturated with the gap. In addition to the partial discharge characteristics, it was verified that the defect of the poor contact can be diagnosed using the radiated electromagnetic waves due to the partial discharge, which measured by a biconical EMC antenna and a spectrum analyzer.

AC Breakdown Analysis by Epoxy Thickness in Composite-Insulation (복합절연물내의 에폭시 두께에 따른 AC 절연파괴 분석)

  • Jung, Hae-Eun;Yun, Jae-Hun;Kim, Byoung-Chul;Kang, Seong-Hwa;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.468-469
    • /
    • 2007
  • $SF_6$ gas used widely as insulating component in electric power industry has excellent in insulation and arc extinguishing performance in gas-insulated switchgear. However, the concern about eco-friendly alternative gas is currently rising, because $SF_6$ gas is one of the main greenhouse gases. As one of the study for $SF_6$ free technology, composite-insulation technology is focused in this paper. To analyze the influence by epoxy thickness change, the composite-insulation composed of dry-air and epoxy was used in this paper. To analyze AC breakdown by the epoxy thickness, needle-plane electrode was used and needle was molded by epoxy. Under the gas pressure ranged from 0.1 to 0.6MPa, the breakdown voltage of dry-air were measured in AC electric field. The data of composite-insulation were acquired by changing the thickness of epoxy used in each composite-insulation under the same condition.

  • PDF

Thermal and Mechanical Properties of Epoxy/Micro- and Nano- Mixed Silica Composites for Insulation Materials of Heavy Electric Equipment

  • Park, Jae-Jun;Yoon, Ki-Geun;Lee, Jae-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.98-101
    • /
    • 2011
  • A 10 nm nano-silica was introduced to a conventional 3 ${\mu}M$ micro-silica composite to develop an eco-friendly new electric insulation material for heavy electric equipment. Thermal and mechanical properties, such as glass transition temperature (Tg), dynamic mechanical analysis, tensile and flexural strength, were studied. The mechanical results were estimated by comparing scale and shape parameters in Weibull statistical analysis. The thermal and mechanical properties of conventional epoxy/micro-silica composite were improved by the addition of nano-silica. This was due to the increment of the compaction via the even dispersion of the nano-silica among the micro-silica particles.

A study on the finishing materials for Reduction of Indoor pollution (실내 환경오염 감소를 위한 건축마감 재료에 관한 연구)

  • Kim, Ja-Kyung;Nam, Kyung-Sook
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.2 s.61
    • /
    • pp.303-313
    • /
    • 2007
  • Nowadays, according to many studies, indoor space's pollution level is two to ten times higher than outdoor space's. This result arouses our attention. The major causes of deterioration of indoor air quality are the lack of ventilation caused by draught-proofing and insulation construction, and harmful chemical substances emitted from building materials, office machine and furniture. Therefore, we are continuing research to find the method for healthful house and production of many forms of well-being goods. However, because of exaggerated advertisements and the lack of accurate information, consumers choose the products whose performance is not verified. Therefore, this study investigates the actual conditions of pollution by building materials and the extent of the health damage by this pollution, and suggests the method for minimizing indoor pollution in aspect of indoor environment control and the use of environment friendly materials. But the building materials presented in this study are limited to the environment friendly construction materials that are in circulation In domestic market because this research is primarily aimed to give domestic consumers the standard for selecting this materials.

Surface Flashover Characteristics on Poor Contact in N2/O2 Mixture Gas under Non-Uniform Field (불평등 전계 중 불량 접촉갭에 관한 N2/O2 혼합가스의 연면플래쉬오버특성)

  • Lim, Dong-Young;Choi, Eun-Hyeok;Choi, Sang-Tae;Choi, Byoung-Ju;Lee, Kwang-Sik;Bae, Sungwoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.63-69
    • /
    • 2015
  • This paper presents the surface flashover characteristics to simulate the poor contact between an anode and a solid dielectric in a $N_2/O_2$ mixture gas (8/2) under a non-uniform field. The surface flashover voltage of the $N_2/O_2$ mixture gas revealed the irregular tendency that was not in accordance with the Paschen's law with an increasing gap of the poor contact. In addition, the insulation performance of the $N_2/O_2$ mixture gas at 0.6MPa was comparable to that of $SF_6$ gas of 0.1MPa based on the insulation performance on the poor contact. These results are able to apply the insulation design of eco-friendly gas insulation switchgear considering the internal faults.