• Title/Summary/Keyword: echo signal

Search Result 476, Processing Time 0.028 seconds

Evaluation of Size for Crack around Rivet Hole Using Lamb Wave and Neural Network (초음파 판파와 신경회로망 기법을 적용한 리뱃홀 부위의 균열 크기 평가)

  • Choi, Sang-Woo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.398-405
    • /
    • 2001
  • The rivet joint has typical structural feature that can be initiation site for the fatigue crack due to the combination of local stress concentration around rivet hole and the moisture trapping. From a viewpoint of structural assurance, it is crucial to evaluate the size of crack around the rivet holes by appropriate nondestructive evaluation techniques. Lamb wave that is one of guided waves, offers a more efficient tool for nondestructive inspection of plates. The neural network that is considered to be the most suitable for pattern recognition has been used by researchers in NDE field to classify different types of flaws and flaw sizes. In this study, clack size evaluation around the rivet hole using the neural network based on the back-propagation algorithm has been tarried out by extracting some features from the ultrasonic Lamb wave for A12024-T3 skin panel of aircraft. Special attention was paid to reduce the coupling effect between the transducer and the specimen by extracting some features related to time md frequency component data in ultrasonic waveform. It was demonstrated clearly that features extracted from the time and frequency domain data of Lamb wave signal were very useful to determine crack size initiated from rivet hole through neural network.

  • PDF

Effects of Gradient Switching Noise on ECD Source Localization with the EEG Data Simultaneously Recorded with MRI (MRI와 동시에 측정한 뇌전도 신호로 전류원 국지화를 할 때 경사자계 유발 잡음의 영향 분석)

  • Lee H. R.;Han J. Y.;Cho M. H.;Im C. H.;Jung H. K.;Lee S. Y.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.2
    • /
    • pp.108-115
    • /
    • 2003
  • Purpose : To evaluate the effect of the gradient switching noise on the ECD source localization with the EEG data recorded during the MRI scan. Materials and Methods : We have fabricated a spherical EEG phantom that emulates a human head on which multiple electrodes are attached. Inside the phantom, electric current dipole(ECD) sources are located to evaluate the source localization error. The EEG phantom was placed in the center of the whole-body 3.0 Tesla MRI magnet, and a sinusoidal current was fed to the ECD sources. With an MRI-compatible EEG measurement system, we recorded the multi channel electric potential signals during gradient echo single-shot EPI scans. To evaluate the effect of the gradient switching noise on the ECD source localization, we controlled the gradient noise level by changing the FOV of the EPI scan. With the measured potential signals, we have performed the ECD source localization. Results : The source localization error depends on the gradient switching noise level and the ECD source position. The gradient switching noise has much bigger negative effects on the source localization than the Gaussian noise. We have found that the ECD source localization works reasonably when the gradient switching noise power is smaller than $10\%$ of the EEG signal power. Conclusion : We think that the results of the present study can be used as a guideline to determine the degree of gradient switching noise suppression in EEG when the EEG data are to be used to enhance the performance of fMRI.

  • PDF

Susceptibility Vessel Sign for the Detection of Hyperacute MCA Occlusion: Evaluation with Susceptibility-weighted MR Imaging

  • Lee, Sangmin;Cho, Soo Bueum;Choi, Dae Seob;Park, Sung Eun;Shin, Hwa Seon;Baek, Hye Jin;Choi, Ho Cheol;Kim, Ji-Eun;Choi, Hye Young;Park, Mi Jung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.2
    • /
    • pp.105-113
    • /
    • 2016
  • Purpose: Susceptibility vessel sign (SVS) on gradient echo image, which is caused by MR signal loss due to arterial thrombosis, has been reported in acute middle cerebral artery (MCA) infarction. However, the reported sensitivity and diagnostic accuracy of SVS have been variable. Susceptibility-weighted imaging (SWI) is a newly developed MR sequence. Recent studies have found that SWI may be useful in the field of cerebrovascular diseases, especially for detecting the presence of prominent veins, microbleeds and the SVS. The purpose of this study was to evaluate the diagnostic values of SWI for the detection of hyperacute MCA occlusion. Materials and Methods: Sixty-nine patients (37 males, 32 females; 46-89 years old [mean, 69.1]) with acute stroke involving the MCA territory underwent MR imaging within 6 hours after the symptom onset. MR examination included T2, FLAIR (fluid-attenuated inversion recovery), DWI, SWI, PWI (perfusion-weighted imaging), contrast-enhanced MR angiography (MRA) and contrast-enhanced T1. Of these patients, 28 patients also underwent digital subtraction angiography (DSA) within 2 hours after MR examination. Presence or absence of SVS on SWI was assessed without knowledge of clinical, DSA and other MR imaging findings. Results: On MRA or DSA, 34 patients (49.3%) showed MCA occlusion. Of these patients, SVS was detected in 30 (88.2%) on SWI. The sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of SWI were 88.2%, 97.1%, 96.8%, 89.5% and 92.8%, respectively. Conclusion: SWI was sensitive, specific and accurate for the detection of hyperacute MCA occlusion.

Detecting Peripheral Nerves in the Elbow using Three-Dimensional Diffusion-Weighted PSIF Sequences: a Feasibility Pilot Study

  • Na, Domin;Ryu, Jaeil;Hong, Suk-Joo;Hong, Sun Hwa;Yoon, Min A;Ahn, Kyung-Sik;Kang, Chang Ho;Kim, Baek Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.2
    • /
    • pp.81-87
    • /
    • 2016
  • Purpose: To analyze the feasibility of three-dimensional (3D) diffusion-weighted (DW) PSIF (reversed FISP [fast imaging with steady-state free precession]) sequence in order to evaluate peripheral nerves in the elbow. Materials and Methods: Ten normal, asymptomatic volunteers were enrolled (6 men, 4 women, mean age 27.9 years). The following sequences of magnetic resonance images (MRI) of the elbow were obtained using a 3.0-T machine: 3D DW PSIF, 3D T2 SPACE (sampling perfection with application optimized contrasts using different flip angle evolution) with SPAIR (spectral adiabatic inversion recovery) and 2D T2 TSE (turbo spin echo) with modified Dixon (m-Dixon) sequence. Two observers used a 5-point grading system to analyze the image quality of the ulnar, median, and radial nerves. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of each nerve were measured. We compared 3D DW PSIF images with other sequences using the Wilcoxon-signed rank test and Friedman test. Inter-observer agreement was measured using intraclass correlation coefficient (ICC) analysis. Results: The mean 5-point scores of radial, median, and ulnar nerves in 3D DW PSIF (3.9/4.2/4.5, respectively) were higher than those in 3D T2 SPACE SPAIR (1.9/2.8/2.8) and 2D T2 TSE m-Dixon (1.7/2.8/2.9) sequences (P < 0.05). The mean SNR in 3D DW PSIF was lower than 3D T2 SPACE SPAIR, but there was no difference between 3D DW PSIF and 2D T2 TSE m-Dixon in all of the three nerves. The mean CNR in 3D DW PSIF was lower than 3D T2 SPACE SPAIR and 2D T2 TSE m-Dixon in the median and ulnar nerves, but no difference among the three sequences in the radial nerve. Conclusion: The three-dimensional DW PSIF sequence may be feasible to evaluate the peripheral nerves around the elbow in MR imaging. However, further optimization of the image quality (SNR, CNR) is required.

Low Frequency Fluctuation Component Analysis in Active Stimulation fMRI Paradigm (활성자극 파라다임 fMRI에서 저주파요동 성분분석)

  • Na, Sung-Min;Park, Hyun-Jung;Chang, Yong-Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.2
    • /
    • pp.115-120
    • /
    • 2010
  • Purpose : To separate and evaluate the low frequency spontaneous fluctuation BOLD signals from the functional magnetic resonance imaging data using sensorimotor active task. Materials and Methods : Twenty female archery players and twenty three control subjects were included in this study. Finger-tapping task consisted of three cycles of right finger tapping, with a subsequent 30 second rest. Blood oxygenation level-dependent (BOLD) data were collected using $T2^*$-weighted echo planar imaging at a 3.0 T scanner. A 3-D FSPGR T1-weighted images were used for structural reference. Image processing and statistical analyses were performed using SPM5 for active finger-tapping task and GIFT program was used for statistical analyses of low frequency spontaneous fluctuation BOLD signal. Results : Both groups showed the activation in the left primary motor cortex and supplemental motor area and in the right cerebellum for right finger-tapping task. ICA analysis using GIFT revealed independent components corresponding to contralateral and ipsilateral sensorimotor network and cognitive-related neural network. Conclusion : The current study demonstrated that the low frequency spontaneous fluctuation BOLD signals can be separated from the fMRI data using finger tapping paradigm. Also, it was found that these independent components correspond to spontaneous and coherent neural activity in the primary sensorimotor network and in the motor-cognitive network.

Vital Sign Detection in a Noisy Environment by Undesirable Micro-Motion (원하지 않는 작은 동작에 의한 잡음 환경 내 생체신호 탐지 기법)

  • Choi, In-Oh;Kim, Min;Choi, Jea-Ho;Park, Jeong-Ki;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.418-426
    • /
    • 2019
  • Recently, many studies on vital sign detection using a radar sensor related to Internet of Things(IoT) smart home systems have been conducted. Because vital signs such as respiration and cardiac rates generally cause micro-motions in the chest or back, the phase of the received echo signal from a target fluctuates according to the micro-motion. Therefore, vital signs are usually detected via spectral analysis of the phase. However, the probability of false alarms in cardiac rate detection increases as a result of various problems in the measurement environment, such as very weak phase fluctuations caused by the cardiac rate. Therefore, this study analyzes the difficulties of vital sign detection and proposes an efficient vital sign detection algorithm consisting of four main stages: 1) phase decomposition, 2) phase differentiation and filtering, 3) vital sign detection, and 4) reduction of the probability of false alarm. Experimental results using impulse-radio ultra-wideband radar show that the proposed algorithm is very efficient in terms of computation and accuracy.

Selection of TI for Suppression Fat Tissue of SPAIR and Comparative Study of SPAIR and STIR of Brain Fast SE T2 Weighted Imaging (뇌의 고속스핀에코 T2강조영상에서 지방조직 억제를 위한 SPAIR의 반전시간(TI) 결정 및 STIR 영상과의 비교 연구)

  • Lee, Hoo-Min;Kim, Ham-Gyum;Kong, Seok-Kyo
    • Journal of radiological science and technology
    • /
    • v.32 no.1
    • /
    • pp.95-99
    • /
    • 2009
  • The purpose of this research is to seek SPAIR's reversal time (TI) which satisfies two conditions ; maintaining the suppression ability of fat tissue and simultaneously minimizing the inhomogeneity of fat tissue in T2 high-speed spin echo 3.0T magnetic resonance image (MRI) of the brain, and to compare SPAIR with STIR which is fat-suppression technique. The reversal times (TI) of SPAIR protocol are set to 1/2, 1/3, 1/6 and 1/12 of SPAIR TR (420 msec), namely 210 msec (8 people), 140 msec (26 people), 70 msec (26 people) and 35 msec (18 people) and STIR TI is set with 250 msec (26 people). With these parameter sets, we acquired the axis direction 104 images of the brain. In ROI ($50\;mm^2$) of output image, signal intensities of the fatty tissue, the muscular tissue, and the background were measured and the CNRs of fatty tissue and the muscular tissue were calculated. The inhomogeneity of the fatty tissue is SD/mean, where SD is the standard deviation and 'mean' is a average fatty tissue signal. Consequently, SPAIR TI is determined on either 1/3 or 1/6 of TR (420 ms) ; 140 ms or 70 ms. Because the difference of statistics in fat-suppression ability and inhomogeneity of fatty tissue is very small (p < 0.001), Selecting 140 ms seems to be better choice for the image quality. Meanwhile, Comparing SPAIR (TI : 140 ms) with STIR, the fat-suppression is not able to be considered statistically (p < 0.252), but the image quality is able to be considered statistically (p < 0.01). In conclusion, SPAIR is better than STIR in the image quality.

  • PDF

Time Resolution Improvement of MRI Temperature Monitoring Using Keyhole Method (Keyhole 방법을 이용한 MR 온도감시영상의 시간해상도 향상기법)

  • Han, Yong-Hee;Kim, Tae-Hyung;Chun, Song-I;Kim, Dong-Hyeuk;Lee, Kwang-Sig;Eun, Choong-Ki;Jun, Jae-Ryang;Mun, Chi-Woong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.31-39
    • /
    • 2009
  • Purpose : This study proposes the keyhole method in order to improve the time resolution of the proton resonance frequency(PRF) MR temperature monitoring technique. The values of Root Mean Square (RMS) error of measured temperature value and Signal-to-Noise Ratio(SNR) obtained from the keyhole and full phase encoded temperature images were compared. Materials and Methods : The PRF method combined with GRE sequence was used to get MR temperature images using a clinical 1.5T MR scanner. It was conducted on the tissue-mimic 2% agarose gel phantom and swine's hock tissue. A MR compatible coaxial slot antenna driven by microwave power generator at 2.45GHz was used to heat the object in the magnetic bore for 5 minutes followed by a sequential acquisition of MR raw data during 10 minutes of cooling period. The acquired raw data were transferred to PC after then the keyhole images were reconstructed by taking the central part of K-space data with 128, 64, 32 and 16 phase encoding lines while the remaining peripheral parts were taken from the 1st reference raw data. The RMS errors were compared with the 256 full encoded self-reference temperature image while the SNR values were compared with the zero filling images. Results : As phase encoding number at the center part on the keyhole temperature images decreased to 128, 64, 32 and 16, the RMS errors of the measured temperature increased to 0.538, 0.712, 0.768 and 0.845$^{\circ}C$, meanwhile SNR values were maintained as the phase encoding number of keyhole part is reduced. Conclusion : This study shows that the keyhole technique is successfully applied to temperature monitoring procedure to increases the temporal resolution by standardizing the matrix size, thus maintained the SNR values. In future, it is expected to implement the MR real time thermal imaging using keyhole method which is able to reduce the scan time with minimal thermal variations.

  • PDF

The Comparative Imaging Study on Mn-phthalocyanine and Mangafodipir trisodium in Experimental VX2 Animal Model (실험적으로 유발시킨 VX2 동물모델에서의 Mn-phthalocyanine과 Mangafodipir trisodium의 비교영상)

  • Park Hyun-Jeong;Ko Sung-Min;Kim Yong-Sun;Chang Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.1
    • /
    • pp.32-41
    • /
    • 2004
  • Purpose : To measure the NMR relaxation properties of MnPC, to observe the characteristics of liver enhancement patterns on MR images in experimentally implanted rabbit VX2 tumor model, and to estimate the possibility of tissue specific contrast agent for MnPC in comparison with the hepatobiliary agent. Materials and Methods : Phthalocyanine (PC) was chelated with paramagnetic ions, manganese (Mn). 2.01 g (5.2 mmol) of phthalocyanine was mixed with 0.37 g (1.4 nlmol) of Mn chloride at $310^{\circ}C$ for 36 hours and then purified by chromatography ($CHCl_3:\;CH_3OH=98:2$, volume ratio) to obtain 1.04 g $(46\%)$ of MnPC (molecular weight = 2000 daltons). The T1/T2 relaxivity (R1/R2) for MnPC were determined at a 1.5 T (64 MHz) MR spectrometer. VX2 tumor model was experimentally implanted in the liver parenchyma of rabbits. All MR studies were performed on 1.5 T. The human extremity radio frequency coil of a bird cage type was employed. MR images were acquired at 17 to 24 days after VX2 carcinoma implantation.4 mmol/kg MnPC and 0.01 mmol/kg Mn-DPDP were injected via the ear vein of rabbits. T1-weighted images were obtained with spin-echo (TR/TE=516/14 msec) and fast multiplanar spoiled gradient recalled (TR/TE : 80/4 msec, $60^{\circ}$ flip angle) pulse sequence. Fast spin-echo (TR/TE=1200/85 msec) was used to obtain the T2-weighted images. Results : The value of T1/T2 relaxivity (R1/R2) of MnPC was $7.28\;mM^{-1}S^{-1}$ and $55.56\;mM^{-1}S^{-1}$ respectively at 1.5 T (64 MHz). Because the T2 relaxivity of MnPC that bonded strongly, covalently manganese with phthalocyanine was very high, the signal intensity of liver parenchyma was decreased on postcontrast T2-weighted images and we could easily distinguish the VX2 carcinoma within the liver parenchyma. When MnPC was administrated intravenously, the tumor margin delineation was more remarkable than Mn-DPDP-enhanced images. The enhancement of liver parenchyma with MnPC persisted at relatively high levels over at least one hour after injection of the contrast agents. Conclusion : The hepatic uptake and biliary excretion of MnPC, which are similar to Mn-DPDP, suggest that this agent is a new liver-specific agent. Also, MnPC seems to be used as a dual contrast agent (T1 and T2) with high T2 relaxivity. However, it is warranted that MnPC needs further investigation as a potential contrast agent for MR imaging of the liver. That is, further characterizations of MnPC are needed in vivo and in vitro before clinical trials. The diagnostic potential of MnPC will also have to be examined more in the animal models of additional types.

  • PDF

[ $Gd(DTPA)^{2-}$ ]-enhanced, and Quantitative MR Imaging in Articular Cartilage (관절연골의 $Gd(DTPA)^{2-}$-조영증강 및 정량적 자기공명영상에 대한 실험적 연구)

  • Eun Choong-Ki;Lee Yeong-Joon;Park Auh-Whan;Park Yeong-Mi;Bae Jae-Ik;Ryu Ji Hwa;Baik Dae-Il;Jung Soo-Jin;Lee Seon-Joo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.2
    • /
    • pp.100-108
    • /
    • 2004
  • Purpose : Early degeneration of articular cartilage is accompanied by a loss of glycosaminoglycan (GAG) and the consequent change of the integrity. The purpose of this study was to biochemically quantify the loss of GAG, and to evaluate the $Gd(DTPA)^{2-}$-enhanced, and T1, T2, rho relaxation map for detection of the early degeneration of cartilage. Materials and Methods : A cartilage-bone block in size of $8mm\;\times\;10mm$ was acquired from the patella in each of three pigs. Quantitative analysis of GAG of cartilage was performed at spectrophotometry by use of dimethylmethylene blue. Each of cartilage blocks was cultured in one of three different media: two different culture media (0.2 mg/ml trypsin solution, 1mM Gd $(DTPA)^{2-}$ mixed trypsin solution) and the control media (phosphate buffered saline (PBS)). The cartilage blocks were cultured for 5 hrs, during which MR images of the blocks were obtained at one hour interval (0 hr, 1 hr, 2 hr, 3 hr, 4 hr, 5 hr). And then, additional culture was done for 24 hrs and 48 hrs. Both T1-weighted image (TR/TE, 450/22 ms), and mixed-echo sequence (TR/TE, 760/21-168ms; 8 echoes) were obtained at all times using field of view 50 mm, slice thickness 2 mm, and matrix $256\times512$. The MRI data were analyzed with pixel-by-pixel comparisons. The cultured cartilage-bone blocks were microscopically observed using hematoxylin & eosin, toluidine blue, alcian blue, and trichrome stains. Results : At quantitation analysis, GAG concentration in the culture solutions was proportional to the culture durations. The T1-signal of the cartilage-bone block cultured in the $Gd(DTPA)^{2-}$ mixed solution was significantly higher ($42\%$ in average, p<0.05) than that of the cartilage-bone block cultured in the trypsin solution alone. The T1, T2, rho relaxation times of cultured tissue were not significantly correlated with culture duration (p>0.05). However the focal increase in T1 relaxation time at superficial and transitional layers of cartilage was seen in $Gd(DTPA)^{2-}$ mixed culture. Toluidine blue and alcian blue stains revealed multiple defects in whole thickness of the cartilage cultured in trypsin media. Conclusion : The quantitative analysis showed gradual loss of GAG proportional to the culture duration. Microimagings of cartilage with $Gd(DTPA)^{2-}$-enhancement, relaxation maps were available by pixel size of $97.9\times195\;{\mu}m$. Loss of GAG over time better demonstrated with $Gd(DTPA)^{2-}$-enhanced images than with T1, T2, rho relaxation maps. Therefore $Gd(DTPA)^{2-}$-enhanced T1-weighted image is superior for detection of early degeneration of cartilage.

  • PDF