• Title/Summary/Keyword: eccentric

Search Result 904, Processing Time 0.024 seconds

Effect of different lateral occlusion schemes on peri-implant strain: A laboratory study

  • Lo, Jennifer;Abduo, Jaafar;Palamara, Joseph
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.1
    • /
    • pp.45-51
    • /
    • 2017
  • PURPOSE. This study aims to investigate the effects of four different lateral occlusion schemes and different excursions on peri-implant strains of a maxillary canine implant. MATERIALS AND METHODS. Four metal crowns with different occlusion schemes were attached to an implant in the maxillary canine region of a resin model. The included schemes were canine-guided (CG) occlusion, group function (GF) occlusion, long centric (LC) occlusion, and implant-protected (IP) occlusion. Each crown was loaded in three sites that correspond to maximal intercuspation (MI), 1 mm excursion, and 2 mm excursion. A load of 140 N was applied on each site and was repeated 10 times. The peri-implant strain was recorded by a rosette strain gauge that was attached on the resin model buccal to the implant. For each loading condition, the maximum shear strain value was calculated. RESULTS. The different schemes and excursive positions had impact on the peri-implant strains. At MI and 1 mm positions, the GF had the least strains, followed by IP, CG, and LC. At 2 mm, the least strains were associated with GF, followed by CG, LC, and IP. However, regardless of the occlusion scheme, as the excursion increases, a linear increase of peri-implant strains was detected. CONCLUSION. The peri-implant strain is susceptible to occlusal factors. The eccentric location appears to be more influential on peri-implant strains than the occlusion scheme. Therefore, adopting an occlusion scheme that can reduce the occurrence of occlusal contacts laterally may be beneficial in reducing peri-implant strains.

A Dual-Scale Analysis of Macroscopic Resin Flow in Vacuum Assisted Resin Transfer Molding Process (VARTM공정에서의 거시적 수지 유동의 Dual-Scale 분석)

  • 박윤희;강문구;이우일
    • Composites Research
    • /
    • v.15 no.6
    • /
    • pp.1-7
    • /
    • 2002
  • In VARTM process where a sacrificial medium is used to facilitate the resin flow, the velocity of resin varies drastically between the sacrificial medium and the fiber preform. Although the thickness-to-length ratio of a VARTM product is usually small, a 3-D analysis is prerequisite to analyze the lead-lag flow in the two different media. The problem associated with the full 3-D analysis is the CPU time. A full 3-D numerical mesh comprising large number of nodes requires an impractical CPU time on average computer platforms. In this study, a dual-scale analysis technique was developed. The flow analysis for the entire calculation domain was conducted in 2.5-D, and the 3-D analysis was performed for a small area of special concern. In some numerical examples, the local 3-D analysis could discover an eccentric flow pattern as well as the lead-lag flow that will inevitably be neglected in 2.5-D simulations. The global-local analysis technique practiced in this study can be used to analyze the intricate flow of resin through non-uniform media in affordable CPU times.

A Study on Synchronization Control Technique of Dual-Servo Press System (듀얼 서보모터 구동형 프레스 시스템의 동기화 제어기법 연구)

  • Na, Sang-Gun;Kwon, O-Shin;Kang, Jae-Hoon;Heo, Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.206-215
    • /
    • 2013
  • In this paper, a synchronization control technique of dual-servo motor driven press system is proposed. An independent cascade PID control technique has been applied to the conventional press system for advancement of control stability. However, it is not easy to reduce synchronous error using the independent cascade PID control technique when some different load disturbances are involved in each motor. The eccentric error of the slide caused by the problem degrade the control performance of the BDC(Bottom Dead Center). In order to achieve reduction of the synchronous error between two servo motors and accurate position control simultaneously, a new control scheme comprised with cascade PID control loop and cross-coupling loop is proposed. In simulation using Matlab SIMULINK, the AC servo system is designed. The control performance of proposed technique is compared with conventional control technique to the model of AC servo system. Also, the sub-scale model of dual-servo motor driven press system which can replicate the slide motion is constructed for experimental verification for the performance of the proposed control technique. The cross-coupling control technique reveals more precise and stable performances in the position and synchronization controls.

A Study on the Machinability of Titanium (티타니움의 절삭성에 관한 연구)

  • Cheong, Seong-Gyu;Oh, Seok-Hyung;Seo, Nam-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.2
    • /
    • pp.40-46
    • /
    • 1989
  • Recently, the researches on cutting the new material have been done for development of aerospace industrial engineering. Especially, titanium ally is well known as heat resisting, antiwear, anticorrosion and difficult-to-machine materials. Many studies on the analysis of shear angle have been done for improving productivity in cutting these materials. In case of titanium alloy, the saw-toothed type of chip which has wave surface of a triangular form, an eccentric from of a continuous type of chip that is produced in the cutting process, was checked. Nakayama supposed that a maximum shear strewss plane and the shear crack in the free surface made an angle of $45^{\circ}$ .deg. , but it's usually much larger than that. In this paper, the author analyzed the shear conditions of the cutting process in the quick-stopping device with the help SEM-photographs, and measured the hypotenuse angle directly in the photographs of the chips. In conclusion, the author tried to find the shear angle in the cutting process with the saw-toothed chip and compared it with the shear angles which can be calculated from the theories established by others. The results obtained are as follows. 1. In case of the saw-toothed chips, the equivalent cutting ratio can be calculated by using the chip thickness to two-thirds of ramp height. 2. The theory of Ernst-Merchant is not applicable to the titanium and its alloys which does not fractured in accordance with the theory of maximum shear stress. 3. When we cut the titanium alloys which produced the saw-toothed chips, the shear angle can be found with the theories of Rowe-Spick, P.K. Wright and the measurement of hypotenuse angle.

  • PDF

Space grid analysis method in modelling shear lag of cable-stayed bridge with corrugated steel webs

  • Ma, Ye;Ni, Ying-Sheng;Xu, Dong;Li, Jin-Kai
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.549-559
    • /
    • 2017
  • As few multi-tower single-box multi-cell cable-stayed bridges with corrugated steel webs have been built, analysis is mostly achieved by combining single-girder model, beam grillage model and solid model in support of the design. However, such analysis methods usually suffer from major limitations in terms of the engineering applications: single-girder model fails to account for spatial effect such as shear lag effect of the box girder and the relevant effective girder width and eccentric load coefficient; owing to the approximation in the principle equivalence, the plane grillage model cannot accurately capture shear stress distribution and local stress state in both top and bottom flange of composite box girder; and solid model is difficult to be practically combined with the overall calculation. The usual effective width method fails to provide a uniform and accurate "effective length" (and the codes fail to provide a unified design approach at those circumstance) considering different shear lag effects resulting from dead load, prestress and cable tension in the construction. Therefore, a novel spatial grid model has been developed to account for shear lag effect. The theoretical principle of the proposed spatial grid model has been elaborated along with the relevant illustrations of modeling parameters of composite box girder with corrugated steel webs. Then typical transverse and longitudinal shear lag coefficient distribution pattern at the side-span and mid-span key cross sections have been analyzed and summarized to provide reference for similar bridges. The effectiveness and accuracy of spatial grid analysis methods has been finally validated through a practical cable-stayed bridge.

Compressive and flexural behaviors of ultra-high strength concrete encased steel members

  • Du, Yong;Xiong, Ming-Xiang;Zhu, Jian;Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.849-864
    • /
    • 2019
  • One way to achieve sustainable construction is to reduce concrete consumption by use of more sustainable and higher strength concrete. Modern building codes do not cover the use of ultra-high strength concrete (UHSC) in the design of composite structures. Against such background, this paper investigates experimentally the mechanical properties of steel fibre-reinforced UHSC and then the structural behaviors of UHSC encased steel (CES) members under both concentric and eccentric compressions as well as pure bending. The effects of steel-fibre dosage and spacing of stirrups were studied, and the applicability of Eurocode 4 design approach was checked. The test results revealed that the strength of steel stirrups could not be fully utilized to provide confinement to the UHSC. The bond strength between UHSC and steel section was improved by adding the steel fibres into the UHSC. Reducing the spacing of stirrups or increasing the dosage of steel fibres was beneficial to prevent premature spalling of the concrete cover thus mobilize the steel section strength to achieve higher compressive capacity. Closer spacing of stirrups and adding 0.5% steel fibres in UHSC enhanced the post-peak ductility of CES columns. It is concluded that the code-specified reduction factors applied to the concrete strength and moment resistance can account for the loss of load capacity due to the premature spalling of concrete cover and partial yielding of the encased steel section.

Dynamic Interaction Analysis of Vehicle-Suspension Bridge Considering Flexural and Torsional Behaviors and Shear Deformation Effects (휨 및 비틀림 거동 및 전단변형 효과를 고려한 차량-현수교의 동적 상호작용 해석)

  • Kim Moon-Young;Lim Myoung-Hun;Kwon Soon-Duck;Kim Ho-Kyung;Kim Nam-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.361-372
    • /
    • 2005
  • In the previous study(Kim 등, 2004), the finite element method was used for the vortical vibration analysis of suspension bridge with the effects of the shear deformation and the rotary inertia under moving load considering the bridge-vehicle interaction. The purpose of this study is to investigate the effect of an eccentric vehicle and shear deformation. So we firstly performs the eigenvalue analysis for the free vortical and the torsional vibration of suspension bridges using FEM analysis. Next the equations of motion considering interaction between suspension bridges and vehicles/trains are derived using the mode superposition method. And then dynamic analysis was performed using the Newmark method. Finally through the numerical examples, the dynamic responses of bridges are investigated according to the proposed procedure.

Narrator as Collective 'We': The Narrative Structure of "A Rose for Emily"

  • Kim, Ji-Won
    • English Language & Literature Teaching
    • /
    • v.17 no.4
    • /
    • pp.141-156
    • /
    • 2011
  • This study purposes to explore the narrative of fictional events complicated by a specific narrator, taking notice of his/her role as an internal focalizer as well as an external participant. In William Faulkner's "A Rose for Emily," the story of an eccentric spinster, Emily Grierson, is focalized and narrated by a townsperson, apparently an individual, but one who always speaks as 'we.' This tale-teller, as a first-hand witness of the events in the story, details the strange circumstances of Emily's life and her odd relationships with her father, her lover, the community, and even the horrible secret hidden to the climactic moment at the end. The narrative 'we' has surely watched Emily for many years with a considerable interest but also with a respectful distance. Being left unidentified on purpose, this narrative agent, in spite of his/her vagueness, definitely knows more than others do and acts undoubtedly as a pivotal role in this tale of grotesque love. Seamlessly juxtaposing the present and the past, the collective 'we' suggests an important subject that the distinction between the past and the present is blurred out for Emily, for whom the indiscernibleness of time flow proves to be her hamartia. The focalizer-narrator describes Miss Emily in the same manner as he/she describes the South whose old ways have passed on by time. Like the Old South, Emily is desperately trapped in the past, since she has not been able to adjust to the changes brought on by time. In the end, the tragic story of Emily Grierson which takes place in Jefferson plainly seems to serve as an introduction to mature Faulkner.

  • PDF

Development of Standard Test Specification for Hiking Stick (등산스틱 시험규격 개발 연구)

  • Kil, S.K.;Kim, J.H.;Kim, T.W.;Lee, S.C.;Hwang, J.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.4
    • /
    • pp.309-317
    • /
    • 2015
  • In this paper, we proposed the standard test specification for safety and function of hiking stick for the elderly. We have concluded nine factors representing specification of hiking stick through analysis of hiking patents and research papers, products survey of business market, case studies for damaged hiking stick and expert surveys. To test the factors, we designed three different kinds of apparatus to examine twist resistance, stick and tip durability and stick straightness. The sample of hiking sticks purchased from market based on Naver sales ranking top to fifteenth. As a result, we concluded six-standard test specification based on eccentric load, adjustable parts load, hand strap load, basket load, tip load and pull load of hiking stick.

  • PDF

Analysis for the Cross Rail Design and the Zig-Zag Motional Error in Gantry Type Machine (Gantry Type 대형 공작기계의 Cross Rail 설계 및 좌우 이송 편차에 관한 해석)

  • Lee, Eung-Suk;Lee, Min-Ki;Park, Jong-Bum;Kim, Nam-Sung;Ham, Jun-Sung;Hong, Jong-Seung;Kim, Tae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.156-160
    • /
    • 2012
  • Recently, the demands of the large scale machine tools gradually increase to machine the large parts, such as large scale crankshaft, yaw and pitch bearings for the wind power generator and the vehicle or aircraft components. But the high technology is necessary in order to develop the huge machine tools. Furthermore, the global market of it has been monopolized by a few companies. So, we need to develop the large scale machine tools and study its core technology to rush into the increasing market. In this study, we carried out the researches for the important core technology of a multi-tasking, machine tool; a large scale 5-axis machine tool of gantry type for multi-task machining. This study is focused on the design of large size gantry type multi-axis machine. In the case of large size of machine the cross rail deflection in the X-axis is significant. To reduce the deflection due to the eccentric spindle head, a special hollow type design in the cross rail with outside ram is adapted in this study. Also, the Zig-Zag motion in the Y-axis is inevitable with the gantry geometry, which is by the un-balancing, different motion at the left and the right columns moving. We tried to reduce the influence of Zig-Zag motion using FEM with different loading conditions at the left and the right side column.