• Title/Summary/Keyword: eaves height

Search Result 21, Processing Time 0.037 seconds

A Study on the Front Elevation Proportion System in Traditional Housing 'An-Chae' - Focused on the Middle-High Classes' Housing in Jeonnam District - (전통주거안채의 정면비례체계에 관한 연구 - 전남지방 중.상류 주택을 중심으로 -)

  • Park, Ji-Min;Cheon, Deuk-Youm
    • Journal of architectural history
    • /
    • v.14 no.4 s.44
    • /
    • pp.73-86
    • /
    • 2005
  • The purpose of this study is to prove the correlations among various factors what determined to formation of front elevation proportion system through making an actual survey and investigating. According to the analysis of them, we make conclusions as follows; 1, On the assumption that average distance of 1Kan(間) is 1, the height of foundation is 0.21, the height of floor from foundation is 0.24, the height of normal column from floor is 0.85, the height of eaves from foundation is 1.10. 2. Southeast faced buildings are wider than southwest faced buildings in the distance of 1Kan (間) in the range of $110{sim}220mm$. The height of foundation and floor in the southeast faced buildings are higher than those in southwest faced buildings beside the height of normal column, eaves, high column in the southwest faced buildings are higher than those in southeast faced buildings. 3. As number of front Kan(間) increases, the distance of 1Kan(間) decrease and the height of eaves and high column(高柱) increases. This is cause of making a maximum needed inner space by increasing the distance of 1Kan(間). This is an wisdom for living from ancestors. 4. As number of Dori(道里) increases, the distances of 1Kan are nearly same but the height of eaves and high column(高柱) increases about 300mm, This is a natural result from an increasing of building scale. 5. The distance of 1Kan(間) in later 19C building is most wide but, the unit heights are minimal average values at year 1900 as a reference mark. After this, the height of normal column, eaves, high column are higher about $170{sim}330mm$. 6. The number of Kan in front elevation, Dori(道里), and direction of building have correlations each other in proportion system of traditional housing An-Chae with significant level, p<0.05.

  • PDF

Evaluation of Natural Ventilation Performance for Multi-span Plastic Greenhouses (다연동 플라스틱 온실의 자연환기성능 평가)

  • Nam, Sang-Woon;Kim, Young-Shik;Seo, Dong-Uk
    • Journal of Bio-Environment Control
    • /
    • v.22 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • Environmental measurements in the many different types of horticultural farms were carried out to evaluate the ventilation performance for multi-span plastic greenhouses according to the eaves height, the number of spans, the existence of side wall vents and the position of roof vents. Hydroponic tomatoes were being cultivated in all experimental greenhouses, and ventilation rates of the greenhouses were analyzed by the heat balance method. It showed that the ventilation rate in the greenhouse with 4 m eaves height increased about 22% compared to the greenhouse with 2 m eaves height. The ventilation rate in the greenhouse with 9 spans decreased about 17% compared to the greenhouse with 5 spans. In the greenhouse with 9 spans, if there were no side wall vents, the ventilation rate showed about a third of the case that side wall vents were open. Overall, as the eaves height was higher and the number of spans was smaller in multi-span greenhouses, the natural ventilation performance was better. And the ventilation performance was best in the greenhouse which the eaves height was high and the position of roof vents was ridge, not gutter. Therefore, in order to maximize the natural ventilation performance, multi-span plastic greenhouses need to improve their structures such as that make the eaves height higher, place the roof vents on the ridge, install the side wall vents as much as possible, and the number of spans is limited to about 10 spans.

Development of Structural Model and Analysis of Design Factors for Small Greenhouse of Urban Agriculture (도시농업을 위한 소형온실 설계요인 분석 및 구조모델 개발)

  • Kim, Hyung-Kweon;Ryou, Young-Sun;Kim, Young-Hwa;Lee, Tae-Seok;Oh, Sung-Sik;Lee, Won-Suk;Kim, Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.388-395
    • /
    • 2019
  • The purpose of this study is to suggest structural model and analyze design factors for the development of small greenhouse standardization model. The average dimensions of small greenhouse desired by urban farmers were 3.3m in width, 1.9m in eaves height, 2.7m in ridge height, 5.7m in length. The cladding materials for small greenhouse were preferred to glass, PC board and plastic film, framework to aluminum alloy and steel, and heating method in electrical energy. In addition, it was analyzed that small greenhouses need to develop structural model by dividing them into entry-level type and high-level type. The roof type that was used for entry-level type was arch shape, framework was steel pipe, cladding material was plastic film. On the other hand, high-level type was used in even span or dutch light type, framework with square hollow steel, cladding materials with glass or PC board. In consideration of these findings and practicality, this study developed four types of small greenhouses. The width, eaves height, ridges height, and length of the small greenhouses of even span type, which were covered with 5mm thick glass and 6mm thick PC board were 3m, 2.2m, 2.9m, and 6m, respectively. The small greenhouse of dutch light type covered with 5mm thick glass was designed with 3.8m in with, 2.2m in eaves height, 2.9m in ridges height, and 6m in length. The width, eaves height, ridges height, and length of the arch shape small greenhouse covered with a 0.15mm PO film were 3m, 1.5m, 2.8m, and 6m, respectively.

Structural Reinforcement Methods and Structural Safety Analysis for the Elevated Eaves Height 1-2W Type Plastic Greenhouse (측고를 높인 1-2W형 비닐하우스의 구조안전성 분석 및 구조보강 방법)

  • Ryu, Hee-Ryong;Yu, In-Ho;Cho, Myeong-Whan;Um, Yeong-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.192-199
    • /
    • 2009
  • This study was conducted to find proper structural reinforcement methods for the 4.5m-high (eaves height) 1-2W type plastic greenhouse. 3D finite element analysis was used to analyze the steel-tube structure. The 4.5m-high 1-2W type plastic greenhouse was modified by welding 1.5m-long steel-pipes into a 3.0m-tall columns of the standard 1-2W type plastic greenhouse. This remodeling method is widely used in Korea with farmer's discretion to increase the production when they grow paprika. But it is not based on the quantitative structural analysis. The proposed reinforcement methods were proved to stand against the design wind velocity of $40m{\cdot}s^{-1}$ and snow depth of 40cm. It strongly implies that the cross beam between side columns and wind resistance walls, and the lattice type cross beam should be good reinforcements to improve the structural safety of the elevated eaves height plastic greenhouse.

A Study on the Feature of the Dimension Plan at Happy Village - Focused on the Comparative Traditional House in Chonnam Province - (전라남도 행복마을 가옥의 치수계획 특징에 관한 연구 -전라남도 전통가옥과의 비교를 중심으로-)

  • Sung, Dae-Chul;Shin, Woong-Ju
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.14 no.4
    • /
    • pp.135-142
    • /
    • 2012
  • This study is aimed to investigate the dimension feature of the plane about the economic type farming village Korean-style house progressed in the Chonnam province and Longitudinal feature and tries to reveal this feature through the comparing analysis with the traditional house positioned in the Chonnam province. This result is as follows. First, the main feature in plane is the setting up the column interval in front when comparing the house of Happy Village and traditional house. In case house of the Happy Village, after firstly fixed the limited scales, sizes are determined, this is due to control the set up in the post interval in this in range. Second, in the case of the traditional houses, 0.68 ratio of the building height about the side length and 0.19 ratio of the eaves extrusion about the side length are consistent ratio about dimensions. However, there is no consistent ratio or fixed law, the various dimensions show up in case of the house of Happy Village. It will be inevitable that space of the post increases for the convenience of life of the modern people. However, it has to sublate and to disregard as the identity of the morphological shown up in the Korean-style house the more various construction standards will need to be presented.

Properties of Components for the Dapogye of Hipped and Gable Roof Wooden Buildings (합각지붕 사찰 주불전의 규모에 따른 기둥 및 처마부 관계분석 연구)

  • Go, Jung-Ju;Lee, Jeong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3192-3202
    • /
    • 2014
  • This study has its purposes on analyzing specific features of the elements according to scales of 32 main buddhist sancta among wooden temples with gable roof that are nationally designated as cultural assets, and analyzing influences and proportional relations between main and submaterials, so that it could be basic and objective data for restore and repair cultural assets in the future. Results of the study are following. First of all, the average plane proportion of doritong (facade) and yangtong (side) in 3-room building is about 1.31:1, while it is 1.70:1 in 5-room building. Secondly, as a result of analyzing the locational proportion and thickness of pillars at each location, floor room turned out to have wider space between pillars than that of edge room or side room in both cases of 3 and 5-room buildings. In the mean time, for the average thickness of the pillars in 3-room building, it was 491mm for corner pillars, 433mm for general pillars in cases of 3-room building, while it was 595 and 511mm respectively in cases of 5-room building. The reason why corner pillars are 60~80mm thicker than general ones in average, is determined to considered structural stability and optical illusion. For the third, as a result of analyzing the influences on pillar thickness, eaves projection and eaves height according to the scale(dimension) of buildings, 3-room buildings have outstanding correlation as its scale(dimension) goes bigger, while 5-room ones are not very much influenced by its scale(dimension). For the fourth, as a result of the relation between pillars and eaves, both of 3 and 5-room buildings have longer-projected and higher eaves as their pillars go taller; especially height of eaves turns out to have very close relation between length of pillars. In addition to that, both of 3 and 5-room buildings have much projected eaves as the eaves go higher.

A Study on the Supporting Method of the Nemok-dori (내목도리 지지 방식에 관한 연구)

  • Heo, Kyoung-Do;Chung, Myung-Sup
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.3
    • /
    • pp.69-78
    • /
    • 2020
  • This study is designed to find out the role and relation of the Nemok-dori support members in order to clearly specify the structure of the Dapogye architecture which adopts the Nemok-dori. The dori at the eaves in the Dapogye architecture was expanded to include Oemok-dori, Jusim-dori and Nemok-dori in cooperation with the bracket. The Oemok-dori is used to lengthen the eaves and the Jusim-dori makes the reasonable transfer of loads while the Namok-dori contributes to the stability of the building through the balancing of the bracket. Nemok-dori is located higher than Oemok-dori or Jusim-dori, depending on the slope of Jangyeon and the distance of Chulmok. But as it is not directly supported by bracket or beam, it needs an independent support. The vertical support of Nemok-dori is selectively involved with Cheomcha, lower Jangyeo, support Wall and upper Jangyeo. As the time went by, the vertical height increased, thus making the omitted members less. The horizontal support of Nemok-dori is made in various ways. There are also special cases such as the Nemok-dori □ type chain structure for small rectangular buildings, the 'Nemok-dori = Jung-dori' type for the buildings having small sides and the 'Nemok-dori = Meongechangbang' type appearing on the lower part of the Bankanmulrim type middle height buildings. The horizontal support of Nemok-dori usually uses either the support of the Toeryang type member, the support of beam directed Hwaban or the support through overlaying of internal Jegong. As the time went by and the number and distance of Chulmok increased, the multiple support structures acted together rather than as one support structure. Nemok-dori got stabilized as it has both the vertical and horizontal supports and this support structure also has he role of decoration.

Development of Single-span Plastic Greenhouses for Hot Pepper Rainproof Cultivation (고추 비가림재배용 단동 비닐하우스 개발)

  • Yu, In Ho;Lee, Eung Ho;Cho, Myeong Whan;Ryu, Hee Ryong;Moon, Doo Gyung
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.371-377
    • /
    • 2013
  • The government has been carrying out a project for supporting the rain shelter for hot pepper as part of measures stabilizing the demand and supply of hot pepper since 2012. However, the eaves height of single-span plastic greenhouses extensively used in farms is low, which are inappropriate for the rainproof cultivation of hot pepper. This study attempted to develop single-span plastic greenhouses which are structurally safe and have the dimensions suitable for the rainproof cultivation of hot pepper as well. The structure status of plastic greenhouses and restructuring wishes of 56 rainproof cultivation farms nationwide were investigated to set up the width and height of the plastic greenhouses. 53% of the plastic greenhouses currently in operation had a width of under 7 m and 64% of their eaves had a height of 1.5 m or less, which accounted for the highest rate. Mostly the width of 7.0 m was desired for the greenhouses and the height of 2.0 m for their eaves, so these values were chosen as the dimensions for the singlespan plastic greenhouses. After an analysis of their structural safety while changing the specifications of the rafter pipe in various ways, 5 kinds of models were suggested considering the frame ratio and installation costs. The 12-Pepper-1 model is a developed single-span plastic greenhouse for hot pepper in which a ${\emptyset}42.2{\times}2.1t$ rafter pipe is installed at an interval of 90cm and the models of 12-Pepper-2 through 5 are the other developed ones in which a ${\emptyset}31.8{\times}1.5t$ rafter pipe is installed at intervals of 60 cm, 70 cm, 80 cm and 90 cm, respectively. As a result of an analysis of economic feasibility of 12-Pepper-2 compared to 10-Single-3 in the notification of the Ministry for Food, Agriculture, Forestry and Fisheries, it turned out that there would be an increase in profits by about 1.2 million won based on one building of a greenhouse sized 672 $m^2$.

A Study on Architectural Characteristics on the Ddeuljip in Northern Area of Kyongsang-Bukdo Focused on Sunshine Environment (일조환경으로 본 경북북부지역 뜰집의 건축계획적 특성 연구)

  • Yi Hyoung-Sam;Kim Hwa-Bong;Yoo Jae-Woo
    • Journal of the Korean housing association
    • /
    • v.17 no.3
    • /
    • pp.111-121
    • /
    • 2006
  • The objective of the study is to derive the quantitative result and method from the solar simulation on the traditional architectonic control methods and their effects for the sunshine on Ddeuljip in Northern Area of Kyongsang-Bukdo Province, Korea. The Ddeuljip(rectangular-shaped housing plan having an inner court) has distinctive form to introduce plentiful sunshine deep inside to the house in spite of disadvantageous condition resulted from the structure of traditional housing composition, that is, Ickrang(linkage block connecting buildings). From the research on the Ddeuljip, following results were derived: First, in the plan the sunshine environment was improved by placing the master bedroom on the right diagonally, or projecting it toward the Ickrang when there isn't enough space for the inner court and the Daechung(wooden floored main hall). Second in the elevation specific sunshine control methods were developed by increasing the height of the master bedroom, reducing the eaves of south elevation, or differentiating the height of ceiling structure gradually.

The Optimum Specification of Pipes in Rain-Sheltering Greenhouse with Roof Vents for Large-Grain Grapevine Cultivation (대립계 포도 천창개폐형 비가림하우스의 최적 파이프 규격)

  • Yum, Sung-Hyun;Yun, Nam-Gyu;Kim, Gyeong-Won;Lee, Sung-Hyoun;Cho, Yong-Ho;Park, Seo-Jun;Park, Mun-Kyun
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.275-283
    • /
    • 2007
  • This study was carried out to: (1) analyze structural stability of representative rain-sheltering greenhouses for large-grain grapevine cultivation with widths of 3.6 m and 5 m in case of using the existing pipe for agriculture; (2) present the optimum specification of pipes in the greenhouse with a width of 5 m under the condition of using the pipe of which ultimate strength has been above $400N{\cdot}mm^{-2}$; (3) evaluate stability and also present the optimum specification of pipes as eaves height was augmented. The above analyses were done for greenhouses with roof vents and also with a main-column interval of 3 m and a rafter interval of 60 cm. First, the existing 3.6 m greenhouse with a rafter of ${\Phi}25.4{\times}1.5t@600$ was stable far a snow-depth of 35 cm but unstable for a wind velocity of $35m{\cdot}s^{-1}$. Meanwhile the existing 5 m greenhouse with the same rafter was not stable for a wind velocity of $335m{\cdot}s^{-1}$ as well as a snow-depth of 35 cm. This meant that existing greenhouses had to be reinforced to secure stability. Second, the specification of pipes, especially rafter, could be classified as two cases. One had a structural stability at a safe wind velocity of $35m{\cdot}s^{-1}$ and a safe snow-depth of 40 cm for which stability the rafter had to be ${\Phi}31.8{\times}1.5t@600$, and the other had a stability at $30m{\cdot}s^{-1}-35cm$ at the specification of rafter ${\Phi}25.4{\times}1.5t@600$. Finally, eaves height had a significant effect on safe wind velocity. But it had little influence on safe snow-depth. The results showed that the specification of side-wall pipes had to be reinforced for the safe side velocity accord-ing to the increment of eaves height and similarly the specification of fore-end post far the safe fore-end velocity.