• Title/Summary/Keyword: earthquake monitoring

Search Result 268, Processing Time 0.031 seconds

Development of Dam Earthquake Monioring System and Application of Earthquake Records for Dam Safety Management against Earthquake (지진대비 댐안전관리를 위한 지진감시시스템 구축 및 계측기록 활용)

  • Ha, Ik-Soo;Lee, Jong-Wook;Cho, Sung-Eun;Oh, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1389-1396
    • /
    • 2008
  • The recent Sichuan earthquake(2008) in China and Iwate-Miyazaki earthquake(2008) in Japan give Korea peninsula warning that it is no more safety zone against damage by earthquake events. So, rapid and appropriate countermeasures for dam operation and management against earthquake are needed. In Korea earthquake design standard(MOCT, 1997) has been revised after Kobe earthquake. Installation of seismometer and monitoring of earthquake for special class dams is requlated in dam aseismic design standard(MOCT, 2001). Accelerometer installation project for existing dams has been carrying out by K-water to establish an earthquake network for dam safety. Real-time dam earthquake monitoring network has also been developed to detect an earthquake efficiently and to warn to dam administrators as soon as possible. In this study, dam real-time earthquake monitoring system developed by K-water was introduced and applicability of real earthquake record measured by this system to dam safety management was illustrated.

  • PDF

Earthquake Observation through Groundwater Monitoring: A case of M4.9 Odaesan Earthquake (지하수 모니터링을 통한 지진 감시 가능성: 중규모(M4.9) 오대산 지진의 관측)

  • Lee, Hyun-A;Kim, Min-Hyung;Hong, Tae-Kyung;Woo, Nam-C.
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.38-47
    • /
    • 2011
  • Groundwater monitoring data from the National Groundwater Monitoring Stations, a total of 320 stations, were analyzed to identify the response of water level and quality to the Odaesan earthquake (M4.9) occurred in January 2007. Among the total of eight stations responded to the earthquake, five wells showed water-level decline, and in three wells, water level rose. In terms of recovery, water levels in four stations had recovered to the original level in five days, but not in the rest four wells. The magnitude of water-level change shows weak relations to the distance between the earthquake epicenter and the groundwater monitoring station. However, the relations to the transmissivities of monitored aquifer in the station with the groundwater change were not significant. To implement the earthquake monitoring system through the groundwater monitoring network, we still need to accumulate the long-term monitoring data and geostatistically analyze those with hydrogeological and tectonic factors.

The Behaviors of Earthquake Monitoring System for Gyungbu High Speed Railroad on the Odaesan Earthquake (오대산지진 시 경부고속철도 지진감시시스템 거동)

  • Kim, Dae-Sang;Kim, Sung-Il;Choi, Su-Hyun;You, Won-Hee
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.537-540
    • /
    • 2008
  • This paper reviews the operation standards and manuals of earthquake monitoring system for Gyungbu high speed railroad. The domestic earthquake monitoring system detects the acceleration data at the locations of lower part of pier and deck of viaducts and bridges, not like foreign system to do the surface ground accelerations. For the purpose of evaluating the behaviors of the domestic earthquake monitoring system, measured acceleration data on the Odaesan earthquake at Iwon viaduct were analysed. The values of maximum acceleration level of the viaduct were increased from 0.0089g(EW component) of the lower part of pier to 0.014g(EW component) on the deck of the viaduct. And also the predominant periods and frequencies were analysed by the frequency domain analysis.

  • PDF

Monitoring about Crustal Deformation by Earthquake in the East of Japan (일본 동부지역 지진에 따른 지각변동 모니터링)

  • Park, Joon-Kyu;Kim, Min-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2390-2395
    • /
    • 2012
  • Monitoring of crustal movement by earthquake is an important line of study in geophysics and geodesy. In this Study, before and after the earthquake data about nine IGS permanent stations were processed by Precise Positioning System to analysis the influence area about Japanese earthquake in March 11 at 2:46pm. As the result of crustal deformation monitoring, the quantitative earthquake displacement and change of crustal movement was presented. Crustal movement monitoring using continuous GPS data processing is necessary for crustal research and predicting earthquake because crustal movement assumed a new aspect before and after the earthquake in Japan.

Embedment of structural monitoring algorithms in a wireless sensing unit

  • Lynch, Jerome Peter;Sundararajan, Arvind;Law, Kincho H.;Kiremidjian, Anne S.;Kenny, Thomas;Carryer, Ed
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.285-297
    • /
    • 2003
  • Complementing recent advances made in the field of structural health monitoring and damage detection, the concept of a wireless sensing network with distributed computational power is proposed. The fundamental building block of the proposed sensing network is a wireless sensing unit capable of acquiring measurement data, interrogating the data and transmitting the data in real time. The computational core of a prototype wireless sensing unit can potentially be utilized for execution of embedded engineering analyses such as damage detection and system identification. To illustrate the computational capabilities of the proposed wireless sensing unit, the fast Fourier transform and auto-regressive time-series modeling are locally executed by the unit. Fast Fourier transforms and auto-regressive models are two important techniques that have been previously used for the identification of damage in structural systems. Their embedment illustrates the computational capabilities of the prototype wireless sensing unit and suggests strong potential for unit installation in automated structural health monitoring systems.

Development of the Operational Program for Seismic Monitoring System in Nuclear Power Plants (원자력발전소 지진감시시스템의 운용프로그램 개발)

  • 김성택
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.82-89
    • /
    • 1997
  • Due to aging of the imported seismic monitoring system of Uljin 1&2 units it is difficult for this system to provide enough functions needed for the security of seismic safety and the evaluation of the earthquake data from the seismic instrumentation. For this reason, it is necessary to replace the seismic monitoring system of Uljin 1&2 units with an upgraded system with corresponding softwars. With operation of this system which incorporates the man-machine interface technology, the operators in nuclear power plant can rapidly and correctly determine the exceedance of Operating Basis Earthquake.

  • PDF

765kV Substations Earthquake Monitoring System and Preliminary Data Analysis (765kV 변전소 지진계측시스템 구축과 관측자료 예비분석)

  • Park, Dong-Hee;Yun, Kwan-Hee;Seo, Yong-Pyo;Kim, Byung-Chel
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.56-63
    • /
    • 2006
  • Facilities of 76skV Substation(S/S) play an important role in electric power supply grids. Various power facilities of 765kV S/S might be damaged enormously if a strong earthquake occurs. In an effort to mitigate possible earthquake disasters, KEPRI (Korea Electric Power Research Institute) set forth plans to verify seismic safety of the facilities of 765kV S/S. To accomplish the task, an earthquake monitoring systems is constructed at four 765kV S/S sites(Shin-AnSung, Shin-TaeBaek, Shin-SeoSan and Shin-GaPyung). Data from these earthquake monitoring stations are being transmitted via satellite communication. Currently, KEPRI is operating an earthquake monitoring system in freefield of Shin-SeoSan S/S (NSS) tentatively, Also, the data from NSS is preliminarily analyzed using the horizontal to vertical (H/V) spectrum ratio method. The method of H/V spectrum ratio has been used to infer site amplification without previous knowledge of near surface geology. The results of data analysis shorts good S/N ratio and amplification of 20-25 Hz by site effect. In the near future, the accumulated data is expected to provide a basis for assessing and predicting any damages to integrity of 765kV S/S facilities by earthquakes.

  • PDF

Groundwater Monitoring Network for Earthquake Surveillance and Prediction (국내 지진 감시·예측을 위한 지하수관측망의 활용 방안)

  • Lee, Hyun A;Hamm, Se-Yeong;Woo, Nam C.
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.401-414
    • /
    • 2017
  • To prevent the damages from earthquakes, various researches have been conducted around the world focusing on earthquake prediction and forecasting for several decades. Among various precursory phenomena, changes in groundwater level and quality are considered to be reliable for estimating the time of earthquake occurrence and its magnitude. In effects, some countries impacted by frequent earthquakes have established and operated the groundwater monitoring network for earthquake surveillance and prediction. In Korea, recently researches have begun for using groundwater monitoring techniques for earthquake prediction. In this paper, the groundwater monitoring networks of China, Japan, and the United States were reviewed focusing on the facilities and results of researches to deduce the tasks for earthquake prediction researches using groundwater monitoring techniques in Korea. In results, research needs are suggested in the implementation of groundwater monitoring networks for specifically earthquake surveillance with the real-time monitoring and the measures to quantify the degrees of abnormal changes in the relationship of distance from the earthquake epicenter.

Evaluation of Structural Integrity and Performance Using Nondestructive Testing and Monitoring Techniques

  • Rhim, Hong-Chul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.73-81
    • /
    • 1998
  • In this paper, the necessity of developing effective nondestructive testing and monitoring techniques for the evaluation of structural integrity and performance is described. The evaluation of structural integrity and performance is especially important when the structures and subject to abrupt external forces such as earthquake. A prompt and extensive inspection is required over a large area of earthquake-damaged zone. This evaluation process is regarded as a part of performance-based design. In the paper, nondestructive testing and monitoring techniques particularly for concrete structures are presented as methods for the evaluation of structural integrity and performance. The concept of performance-based design is first defined in the paper followed by the role of evaluation of structures in the context of overall performance=based design concept. Among possible techniques for the evaluation, nondestructive testing methods for concrete structures using radar and a concept of using fiber sensor for continuous monitoring of structures are presented.

  • PDF

Gyeongju Earthquakes Recorded in Daily Groundwater Data at National Groundwater Monitoring Stations in Gyeongju (경주 국가지하수관측소 일자료로 본 경주지진 영향)

  • Lee, Jin-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.80-86
    • /
    • 2016
  • Earthquakes of M5.1, M5.8 and M4.5 occurred in September 12 and 19 respectively in Gyeongju, Gyeongbuk Province. Theses earthquakes inflated fears of people and highlighted necessity of detailed countermeasures because we have considered our country is safe to earthquakes. In the meanwhile, earthquake also impacts groundwater and thus it was recently reported that the Gyeongju Earthquakes affected groundwater there. This study evaluates daily groundwater data collected from five national groundwater monitoring stations (Geoncheon, Sannae, Oedong, Yangbuksin, Cheonbuk) in Gyeongju. The analysis revealed that only groundwater level of bedrock monitoring well hosted in andesite exhibited earthquake impact while no wells in the other four stations hosted in sedimentary rocks showed substantial responses to the earthquakes. This may be derived from the difference of seismic velocity of hosting rocks as well as epicenter distance. Special interest on groundwater monitoring is required to predict earthquakes as precursory phenomena.