• 제목/요약/키워드: earthquake mechanism

검색결과 268건 처리시간 0.023초

PC 기둥-H형강보의 볼트접합부에 관한 실험적 연구 (An Experimental Study on The Bolted Connection Between H-Beam and Precast-Concrete Column)

  • 조은영;박순규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.181-185
    • /
    • 2003
  • The composite structural system with reinforced concrete column and steel beam has some advantages in the structural efficiency by complementing the shortcomings between the two systems. The system, however, has also a lot of problems in earthquake-proof capacity and construction process because it is wet method of construction. So, this paper proposed PCS(Precast Concrete Column and Steel Beam) structural system with dry method of construction. Purpose of this study is to enhance merit and control failure mechanism by installing Dog-Bone on H-beam.

  • PDF

Canada 서해(西海)의 Seismicity (Seismicity of the offshore area of western Canada)

  • 이기화
    • 자원환경지질
    • /
    • 제11권1호
    • /
    • pp.11-20
    • /
    • 1978
  • This paper examines the seismicity of the offshore area of western Canada in the light of findings from a detailed study of an earthquake swarm which occurred in the area during November-December in 1971. The distribution of epicenters and focal mechanism solutions of a few main events suggest that the seismicity of the area may largely be interpreted in terms of plate interactions among the Pacific, Juan de Fuca, Explorer and North American plates. Differences between the patterns of seismicity along the transform fracture zones and at their junctions with the ridges were also observed.

  • PDF

Experimental study on cyclic behavior of reinforced concrete parallel redundancy walls

  • Lua, Yiqiu;Huang, Liang
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1177-1191
    • /
    • 2014
  • Reinforced concrete (RC) shear walls are one of the most commonly used lateral-load resisting systems in high-rise buildings. RC Parallel redundancy walls studied herein consist of two parts nested to each other. These two parts have different mechanical behaviors and energy dissipation mechanisms. In this paper, experimental studies of four 1/2-scale specimens representing this concept, which are subjected to in-plane cyclic loading, are presented and test results are discussed. Two specimens consist of a wall frame with barbell-shaped walls embedded in it, and the other two consist of a wall frame and braced walls nested each other. The research mainly focuses on the failure mechanism, strength, hysteresis loop, energy dissipation capacity and stiffness of these walls. Results show that the RC parallel redundancy wall is an efficient lateral load resisting component that acts as a "dual" system with good ductility and energy dissipation capacity. One main part absorbs a greater degree of the energy exerted by an earthquake and fails first, whereas the other part can still behave as an independent role in bearing loads after earthquakes.

혼합형 마찰댐퍼 구조성능에 대한 실험적 연구 (Experimental Study on the Structural Performance of Hybrid Friction Damper)

  • 김도현;김지영
    • 한국공간구조학회논문집
    • /
    • 제15권3호
    • /
    • pp.103-110
    • /
    • 2015
  • Various hybrid dampers have been developed as increasing tall buildings in Korea. To minimize the installment space and cost, the new hybrid friction damper was developed using friction components. It is composed of two one-nodal rotary frictional components and a slotted bolted frictional connection. Because of these components, hybrid friction damper can be activated by building movements due to lateral forces such as a wind and earthquake. In this paper, displacement amplitude dependency tests were carried out to evaluate on the structural performance and the multi-slip mechanism of the hybrid damper. Test results show that the multi-slip mechanism is verified and friction coefficients are increasing as displacement amplitudes are increasing.

지진하중에 대한 보 부모멘트의 재분배 (Redistribution of Negative Moments in Beams Subjected to Seismic Load)

  • 엄태성;박홍근;김재요
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.145-146
    • /
    • 2010
  • 철근콘크리트 구조물에 적용할 수 있는 지진하중에 대한 간략 모멘트 재분배 방법을 개발하였다. 강기둥-약보 거동을 보이는 골조에 대하여 모멘트 재분배에 의한 하중전달 및 변형 메커니즘을 분석하였다. 그 결과를 토대로 보의 부모멘트 단부에서 허용되는 모멘트 재분배율과 보의 소성회전변형 사이의 정량적 관계를 정립하였다. 제안된 방법은 부재강성, 중력하중, 모멘트재분배, 벽체 및 보-기둥 접합부에 의한 강체거동 등에 의하여 보의 양단부 소성힌지에 요구되는 회전변형요구량을 평가할 수 있다.

  • PDF

회전형 복합마찰댐퍼 구조거동에 대한 실험적 연구 (Experimental Study on the Structural Behaviour of Rotary Friction Damper)

  • 김도현;김지영;김명한
    • 한국공간구조학회논문집
    • /
    • 제15권4호
    • /
    • pp.73-80
    • /
    • 2015
  • The new rotary friction damper was developed using several two-nodal rotary frictional components with different clamping forces. Because of these components, the rotary friction damper can be activated by building movements due to lateral forces such as a wind and earthquake. In this paper, various dependency tests such as displacement amplitude, forcing frequency and long term cyclic loading were carried out to evaluate on the structural performance and the multi-slip mechanism of the new damper. Test results show that the multi-slip mechanism is verified and friction coefficients are dependent on displacement amplitute and forcing frequency except long term cyclic loading.

다목적연구로 반응도 제어장치의 제어봉에 대한 내진해석 (Seismic Analysia of Absorber Rod in KMRR Reactivity Control Mechanism)

  • 조영갑;유봉;김태룡;안규석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1990년도 봄 학술발표회 논문집
    • /
    • pp.44-49
    • /
    • 1990
  • This study is a seismic analysia of absorber rod in KMRR Reactivity Control Mechanism. The model being studied i8 two coaxial tubes (control absorber rod and flow tube) immersed in the water and partially coupled (overlap) by water Hap. The hydrodynamic mass effects by the water in each surrounding conditions are considered in the model. The natural frequencies, stresses and displacements of the system due to Safe Shutdown Earthquake are computed in the cases of in-phase modes and out-of-phase modes of two coaxial tubes. The results show that maximum stresses are well below the allowable limit and maximum displacements at the ends of both tubes in out-of-phase modes are so huck that the tubes contact each other in the overlap zone.

  • PDF

Seismic response of steel reinforced concrete spatial frame with irregular section columns under earthquake excitation

  • Xue, Jianyang;Zhou, Chaofeng;Liu, Zuqiang;Qi, Liangjie
    • Earthquakes and Structures
    • /
    • 제14권4호
    • /
    • pp.337-347
    • /
    • 2018
  • This paper presents some shaking table tests conducted on a 1/4-scaled model with 5-story steel reinforced concrete (SRC) spatial frame with irregular section columns under a series of base excitations with gradually increasing acceleration peaks. The test frame was subjected to a sequence of seismic simulation tests including 10 white noise vibrations and 51 seismic simulations. Each seismic simulation was associated with a different level of seismic disaster. Dynamic characteristic, strain response, acceleration response, displacement response, base shear and hysteretic behavior were analyzed. The test results demonstrate that at the end of the loading process, the failure mechanism of SRC frame with irregular section columns is the beam-hinged failure mechanism, which satisfies the seismic code of "strong column-weak beam". With the increase of acceleration peaks, accumulated damage of the frame increases gradually, which induces that the intrinsic frequency decreases whereas the damping ratio increases, and the peaks of acceleration and displacement occur later. During the loading process, torsion deformation appears and the base shear grows fast firstly and then slowly. The hysteretic curves are symmetric and plump, which shows a good capacity of energy dissipation. In summary, SRC frame with irregular section columns can satisfy the seismic requirements of "no collapse under seldom earthquake", which indicates that this structural system is suitable for the construction in the high seismic intensity zone.

Seismic collapse safety of high-rise RC moment frames supported on two ground levels

  • Wu, Yun-Tian;Zhou, Qing;Wang, Bin;Yang, Yeong-Bin;Lan, Tian-Qing
    • Earthquakes and Structures
    • /
    • 제14권4호
    • /
    • pp.349-360
    • /
    • 2018
  • Reinforced concrete (RC) moment frames supported on two ground levels have been widely constructed in mountainous areas with medium to high seismicity in China. In order to investigate the seismic collapse behavior and risk, a scaled frame model was tested under constant axial load and reversed cyclic lateral load. Test results show that the failure can be induced by the development of story yielding at the first story above the upper ground. The strong column and weak beam mechanism can be well realized at stories below the upper ground. Numerical analysis model was developed and calibrated with the test results. Three pairs of six case study buildings considering various structural configurations were designed and analyzed, showing similar dynamic characteristics between frames on two ground levels and flat ground of each pair. Incremental dynamic analyses (IDA) were then conducted to obtain the seismic collapse fragility curves and collapse margin ratios of nine analysis cases designated based on the case study buildings, considering amplification of earthquake effect and strengthening measures. Analysis results indicate that the seismic collapse safety is mainly determined by the stories above the upper ground. The most probable collapse mechanism may be induced by the story yielding of the bottom story on the upper ground level. The use of tie beam and column strengthening can effectively enhance the seismic collapse safety of frames on two ground levels.

Vertical equipment isolation using piezoelectric inertial-type isolation system

  • Lu, Lyan-Ywan;Lin, Ging-Long;Chen, Yi-Siang;Hsiao, Kun-An
    • Smart Structures and Systems
    • /
    • 제26권2호
    • /
    • pp.195-211
    • /
    • 2020
  • Among anti-seismic technologies, base isolation is a very effective means of mitigating damage to structural and nonstructural components, such as equipment. However, most seismic isolation systems are designed for mitigating only horizontal seismic responses because the realization of a vertical isolation system (VIS) is difficult. The difficulty is primarily due to conflicting isolation stiffness demands in the static and dynamic states for a VIS, which requires sufficient rigidity to support the self-weight of the isolated object in the static state, but sufficient flexibility to lengthen the isolation period and uncouple the ground motion in the dynamic state. To overcome this problem, a semi-active VIS, called the piezoelectric inertia-type vertical isolation system (PIVIS), is proposed in this study. PIVIS is composed of a piezoelectric friction damper (PFD) and a leverage mechanism with a counterweight. The counterweight provides an uplifting force in the static state and an extra inertial force in the dynamic state; therefore, the effective vertical stiffness of PIVIS is higher in the static state and lower in the dynamic state. The PFD provides a controllable friction force for PIVIS to further prevent its excessive displacement. For experimental verification, a shaking table test was conducted on a prototype PIVIS controlled by a simple controller. The experimental results well agree with the theoretical results. To further investigate the isolation performance of PIVIS, the seismic responses of PIVIS were simulated numerically by considering 14 vertical ground motions with different characteristics. The responses of PIVIS were compared with those of a traditional VIS and a passive system (PIVIS without control). The numerical results demonstrate that compared with the traditional and passive systems, PIVIS can effectively suppress isolation displacement in all kinds of earthquake with various peak ground accelerations and frequency content while maintaining its isolation efficiency. The proposed system is particularly effective for near-fault earthquakes with long-period components, for which it prevents resonant-like motion.