• 제목/요약/키워드: earthquake loads

검색결과 594건 처리시간 0.025초

고강도 표면매립용철근과 탄소섬유시트로 보강된 비연성 철근콘크리트 골조의 실물 진동기 실험 (Full-Scale Shaker Testing of Non-Ductile RC Frame Structure Retrofitted Using High-Strength Near Surface Mounted Rebars and Carbon FRP Sheets)

  • 신지욱;전종수
    • 한국지진공학회논문집
    • /
    • 제23권1호
    • /
    • pp.43-54
    • /
    • 2019
  • Existing reinforced concrete frame buildings designed for only gravity loads have been seismically vulnerable due to their inadequate column detailing. The seismic vulnerabilities can be mitigated by the application of a column retrofit technique, which combines high-strength near surface mounted bars with a fiber reinforced polymer wrapping system. This study presents the full-scale shaker testing of a non-ductile frame structure retrofitted using the combined retrofit system. The full-scale dynamic testing was performed to measure realistic dynamic responses and to investigate the effectiveness of the retrofit system through the comparison of the measured responses between as-built and retrofitted test frames. Experimental results demonstrated that the retrofit system reduced the dynamic responses without any significant damage on the columns because it improved flexural, shear and lap-splice resisting capacities. In addition, the retrofit system contributed to changing a damage mechanism from a soft-story mechanism (column-sidesway mechanism) to a mixed-damage mechanism, which was commonly found in reinforced concrete buildings with strong-column weak-beam system.

지진하중이 작용하는 RC 필로티 건축물의 동적해석 (Dynamic Analysis of RC Piloti-Type Building Subjected to Earthquake Loads)

  • 김주원
    • 한국전산구조공학회논문집
    • /
    • 제34권3호
    • /
    • pp.121-128
    • /
    • 2021
  • 본 연구에서는 비틀림비정형성과 수직비정형성을 가진 RC 필로티 건축물의 지진동에 대한 거동을 층강성을 적용하여 간단하게 모델링하는 선형 동적해석 프로그램을 개발하고자 한다. 개발된 동적 해석 프로그램을 적용하여 필로티 건축물의 동적 거동 및 필로티층 각 기둥의 전단력을 분석하고, 필로티층에 전단벽 또는 가새를 보강하였을 때 보강효과를 평가하고자 한다. 모서리코어가 있는 필로티 건축물에서 필로티층의 코어 반대편 모서리를 전단벽이나 K형 가새로 보강하였을 때 변위와 기둥 전단력이 크게 감소하는 것으로 나타났으며, 모서리 양면을 K형 가새로 보강하는 것보다 한 면을 전단벽으로 보강하는 것이 보강효과가 큰 것으로 나타났다.

유한요소해석을 활용한 비구조 조적벽의 면외방향 설계 (Design for Out-of-Plane Direction of Nonstructural Masonry Walls Using Finite Element Analysis)

  • 최명규;유은종;김민재
    • 한국지진공학회논문집
    • /
    • 제26권1호
    • /
    • pp.23-30
    • /
    • 2022
  • This study proposed a simplified finite element analysis procedure for designing the nonstructural masonry wall in the out-of-plane direction. The proposed method is a two-step elastic analysis procedure by bilinearizing the behavior of the masonry wall. The first step analysis was conducted with initial stiffness representing the behavior up to the effective-yield point, and the second step analysis was conducted with post-yield stiffness. In addition, the orthotropic material property of the masonry was considered in the FE analysis. The maximum load was estimated as the sum of the maximum loads in the first and second step analyses. The maximum load was converted into the moment coefficients and compared with those from the yield line method applied in Eurocode 6. The moment coefficients calculated through the proposed procedure showed a good match with those from the yield line method with less than 6% differences.

TMD 제어성능 개선을 위한 ETMD 개발 (Development of ETMD for Improving TMD Control Performance)

  • 전승곤
    • 한국지진공학회논문집
    • /
    • 제26권4호
    • /
    • pp.157-164
    • /
    • 2022
  • The TMD has a simpler structure than other vibration control devices and shows excellent control performance for the standardized vibration occurring in the structure. However, when the vibration cycle of the structure coincides with the vibration cycle of the TMD due to the sudden external loads, the off-tuning occurs, which threatens the structure while increasing the vibration width of the TMD. Therefore, Electromagnetic Tuned Mass Damper (ETMD) was developed as a semi-active TMD that prevents off-tuning while exhibiting excellent control performance like TMD. To verify the control performance of the developed ETMD, the bending behavior control performance evaluation experiment using a simple beam bridge was performed. The experimental method compared the mutual control power by experimenting with the existing TMD method and the developed ETMD under nine excitation frequency conditions. As a result, it was confirmed that the control effect of ETMD was about 4.85% higher than that of TMD at 3.02Hz, which generates the maximum displacement in the simple beam bridge. Also, the off-tuning occurred in some excitation conditions when using TMD, although the off-tuning did not occur when using ETMD. Therefore, the excellent control performance of the ETMD developed in this study was verified.

A reliability-based approach to investigate the challenges of using international building design codes in developing countries

  • Kakaie, Arman;Yazdani, Azad;Salimi, Mohammad-Rashid
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.677-688
    • /
    • 2021
  • The building design codes and standards in many countries usually are either fully or partially adopted from the international codes. However, regional conditions like the quality of construction industry and different statistical parameters of load and resistance have essential roles in the code calibration of building design codes. This paper presents a probabilistic approach to assess the reliability level of adopted national building codes by simulating design situations and considering all load combinations. The impact of the uncertainty of wind and earthquake loads, which are entirely regional condition dependent and have a high degree of uncertainty, are quantified. In this study, the design situation is modeled by generating thousands of numbers for load effect ratios, and the reliability level of steel elements for all load combinations and different load ratios is established and compared to the target reliability. This approach is applied to the Iranian structural steel code as a case study. The results indicate that the Iranian structural steel code lacks safety in some load combinations, such as gravity and earthquake load combinations, and is conservative for other load combinations. The present procedure can be applied to the assessment of the reliability level of other national codes.

Combined resonant column and cyclic triaxial tests to estimate the dynamic behavior of undisturbed saturated clayey soils of Adapazarı, Turkey

  • Ersin Guler;Kamil Bekir Afacan
    • Geomechanics and Engineering
    • /
    • 제33권3호
    • /
    • pp.243-259
    • /
    • 2023
  • Turkey is one of the most important earthquake regions in Europe. This region has been exposed to many earthquakes of different magnitudes from past to present. It is of great importance to determine the dynamic properties of the soils for structures to be built in earthquake zones. In order to minimize the damages that may occur, the behavior of the soils under repeated loads should be known and taken into consideration in the design. In this study, 4 different point borings were taken near active fault lines in the North Anatolian fault zone (NAFZ). In order to determine the dynamic parameters of soils, both dynamic triaxial (TRX) and resonant column (RC) tests were carried out on undisturbed samples at every 5 m. As a result of the experiments, Vs and Gmax values were obtained from the field and differences were determined. The dynamic behavior of the soil was examined at varying depths with the comparison of reference models in the literature and compatible results were obtained. Finally, the behavior at the transition region is highlighted. As a result, three shear modulus and dumping ratio models have been proposed for clay soils to be used in different soil conditions.

Comparison of different codes using fragility analysis of a typical school building in Türkiye: Case study of Bingöl Çeltiksuyu

  • Ibrahim Baran Karasin;Mehmet Emin Oncua
    • Earthquakes and Structures
    • /
    • 제25권4호
    • /
    • pp.235-247
    • /
    • 2023
  • Bingöl, a city in eastern Türkiye, is located at a very close distance to the Karlıova Region which is a junction point of the North Anatolian Fault Zone and Eastern Anatolian Fault Zone. By bilateral step over of North Anatolian Fault Zone and Eastern Anatolian Fault Zone each other there occurred NorthWest-SouthEast extended right-lateral and NorthEast-SouthWest extended left-lateral fault zones. In this paper, a typical school building located in Bingöl Çeltiksuyu was selected as the case study. Information on the school building and Bingöl Earthquake (2003) have been given in the paper. This study aimed to determine the fragility curves of the school building according to HAZUS 2022, Turkish Seismic Codes 1998, 2007 and 2018. These codes have been introduced in terms of damage limits. Incremental dynamic analysis is a parametric analysis method that has recently emerged in several different forms to estimate more thoroughly structural performance under seismic loads. Fragility analysis is commonly using to estimate the damage probability of buildings. Incremental Dynamic Analysis have performed, and 1295 Incremental Dynamic Analysis output was evaluated to obtain fragility curves. 20 different ground motion records have been selected with magnitudes between 5.6M and 7.6M. Scaling factors of these ground motions were selected between 0.1g and 2g. Comparison has been made between HAZUS 2022 and Turkish Seismic Codes 1998, 2007 and 2018 in terms of damage states and how they affected fragility curves. TSC 1998 has more conservative strictions along with TSC 2018 than TSC2007 and HAZUS moderate and extensive damage limits.

The influence of concrete degradation on seismic performance of gravity dams

  • Ahmad Yamin Rasa;Ahmet Budak;Oguz Akin Duzgun
    • Earthquakes and Structures
    • /
    • 제26권1호
    • /
    • pp.59-75
    • /
    • 2024
  • This paper presents a dam-reservoir interaction model that includes, water compressibility, sloshing of surface water, and radiation damping at the far-end reservoir, to investigate the influence of concrete deterioration on seismic behavior along with seismic performance of gravity dams. Investigations on seismic performance of the dam body have been conducted using the linear time-history responses obtained under six real and 0.3 g normalized earthquake records with time durations from 10 sec to 80 sec. The deterioration of concrete is assumed to develop due to mechanical and chemical actions over the dam lifespan. Several computer programs have been developed in FORTRAN 90 and MATLAB programming languages to analyze the coupled problem considering two-dimensional (2D) plane-strain condition. According to the results obtained from this study, the dam structure shows critical responses at the later ages (75 years) that could cause disastrous consequences; the critical effects of some earthquake loads such as Chi-Chi with 36.5% damage and Loma with 56.2% damage at the later ages of the selected dam body cannot be negligible; and therefore, the deterioration of concrete along with its effects on the dam response should be considered in analysis and design.

철골 보통모멘트골조의 내진성능 향상을 위한 강도기반 설계 절차 제안 (Proposal of Strength-Based Design Procedure for Improving the Seismic Performance of Steel Ordinary Moment Frames)

  • 김태오;한상환
    • 한국지진공학회논문집
    • /
    • 제28권1호
    • /
    • pp.11-20
    • /
    • 2024
  • The ductility of the system based on the capacity of each structural member constituting the seismic force-resisting system is a significant factor determining the structure's seismic performance. This study aims to provide a procedure to supplement the current seismic design criteria to secure the system's ductility and improve the seismic performance of the steel ordinary moment frames. For the study, a nonlinear analysis was performed on the 9- and 15-story model buildings, and the formation of collapse mechanisms and damage distribution for dynamic loads were analyzed. As a result of analyzing the nonlinear response and damage distribution of the steel ordinary moment frame, local collapse due to the concentration of structural damage was observed in the case where the influence of the higher mode was dominant. In this study, a procedure to improve the seismic performance and avoid inferior dynamic response was proposed by limiting the strength ratio of the column. The proposed procedure effectively improved the seismic performance of steel ordinary moment frames by reducing the probability of local collapse.

약진지역에서의 초과강도 및 반응수정계수 (Overstrength and Response Modification Factor in Low Seismicity Regions)

  • 이동근;조소훈;고현;김태진
    • 한국지진공학회논문집
    • /
    • 제10권3호
    • /
    • pp.57-64
    • /
    • 2006
  • 현행 약진지역의 내진설계기준은 주로 강진지역에서의 연구결과에 근거하고 있다. 하지만, 약진지역의 경우 지진하중보다는 중력하중이나 풍하중에 의해 구조설계가 지배되므로 구조물의 초과강도가 강진지역의 경우보다 증가하게 된다. 따라서 약진지역에 적합한 내진설계기준을 마련하기 위해서는 강진지역에 적용되는 반응수정계수를 약진지역에 그대로 적용할 수 있는지에 대한 검증이 필요하다. 본 연구에서는 건축구조물에 대한 소성해석을 통해 그 연성도와 초과강도를 산정하고 이에 근거하여 현행 반응수정계수의 적절성 여부를 검토하였다. 강진, 중진, 약진지역 등에서의 초과강도와 연성요구도를 비교하기 위하여 UBC-97에 근거하여 설계된 예제구조물을 선정하여 해석을 수행하였다. 해석결과에 의하면 약진지역의 초과강도가 강진지역보다 크기 때문에 동일한 반응수정계수에 대한 약진지역의 연성요구도는 강진지역에서보다 적게 된다. 따라서 동일한 반응수정계수를 이용하여 설계된 약진지역 구조물의 경우 접합부에서의 소성회전각 요구량을 강진지역의 경우에 비하여 상대적으로 저감시킬 수 있을 것이다.