• Title/Summary/Keyword: earthquake force

Search Result 689, Processing Time 0.021 seconds

Performance Evaluation of Decentralized Control Algorithm of a Full-scale 5-story Structure Installed with Semi-active MR Damper Excited by Seismic Load (준능동 MR감쇠기가 설치된 실물크기 구조물의 분산제어 알고리즘 성능평가)

  • Youn, Kyung-Jo;Park, Eun-Churn;Lee, Heon-Jae;Moon, Seok-Jun;Min, Kyung-Won;Jung, Hyung-Jo;Lee, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.255-262
    • /
    • 2008
  • In this study, seismic response control performance of decentralized response-dependent MR damper which generates the control force using only the response of damper-installed floor, was experimentally investigated through the tests of a full-scale structure installed with large MR dampers. The performance of the decentralized control algorithm was compared to those of the centralized ones such as Lyapunov, modulated homogeneous friction, and clipped-optimal control. Hybrid mass damper were controlled to induce seismic response of the full-scale structure under El Centro earthquake. Experimental results indicated that the proposed decentralized MR damper provided superior or equivalent performance to centralized one in spite of using damper-installed floor response for calculating input voltage to MR damper.

Observer Kalman Filter Identification of a Three-story Structure installed with Active Mass Driver (OKID를 이용한 실험 건물모델의 시스템 식별 실험)

  • 주석준;이상현;민경원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.161-169
    • /
    • 2004
  • This paper deals with system identification of a three-story building model with active mass damper (MID) for the controller design. Observer Kalman filter identification (OKID) technique is applied to find the relationship between the experimental results of the input and output. The inputs to the building model with MID are ground accelerations and motor command signal, which are, respectively, simulated earthquake and equivalent control force. The outputs are each floor acceleration and MID acceleration. The MID controller is designed based on the experimentally identified building system. Finally it is shown that experimental results agree accurately with simulated results.

Seismic Performance Evaluation of School Building Short Column Effect (끼움벽과 단주효과를 고려한 학교건축물의 내진성능평가)

  • Ju, Chang-Gil;Han, Ju-Yeon;Park, Tae-Won
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.21 no.2
    • /
    • pp.33-39
    • /
    • 2014
  • In the case of low-rise buildings in seismic performance evaluation, lateral force resistance of the pillars affects the seismic performance of the building. Evaluation of the seismic performance of the column is determined by the holding performance is evaluated by comparing the shear strength and bending strength it was destroyed bylow intensity. In case of the school building, in order to install the large windows for ventilation and lighting of the partition walls are located between the pillars. The case of the pillars of these, shear failure occurs in the event of an earthquake is often, in the seismic performance evaluation, partition wall and the wall of the shim is evaluated ignoring, pillar of the general pillars If you have to calculate the results of the seismic performance distorted that are destroyed by bending behavior can be evaluated as often. Results of the study, when assessed by distinguishing the effective length of the column, it was found that when a seismic load is applied, it is possible to accurately predict the failure mode, reliable results of seismic performance evaluation of the school building.

Investigation of dynamic P-Δ effect on ductility factor

  • Han, Sang Whan;Kwon, Oh-Sung;Lee, Li-Hyung
    • Structural Engineering and Mechanics
    • /
    • v.12 no.3
    • /
    • pp.249-266
    • /
    • 2001
  • Current seismic design provisions allow structures to deform into inelastic range during design level earthquakes since the chance to meet such event is quite rare. For this purpose, design base shear is defined in current seismic design provisions as the value of elastic seismic shear force divided by strength reduction factor, R (${\geq}1$). Strength reduction factor generally consists of four different factors, which can account for ductility capacity, overstrength, damping, and redundancy inherent in structures respectively. In this study, R factor is assumed to account for only the ductility rather than overstrength, damping, and redundancy. The R factor considering ductility is called "ductility factor" ($R_{\mu}$). This study proposes ductility factor with correction factor, C, which can account for dynamic P-${\Delta}$ effect. Correction factor, C is established as the functional form since it requires computational efforts and time for calculating this factor. From the statistical study using the results of nonlinear dynamic analysis for 40 earthquake ground motions (EQGM) it is shown that the dependence of C factor on structural period is weak, whereas C factor is strongly dependant on the change of ductility ratio and stability coefficient. To propose the functional form of C factor statistical study is carried out using 79,920 nonlinear dynamic analysis results for different combination of parameters and 40 EQGM.

Evaluation of performance of eccentric braced frame with friction damper

  • Vaseghi Amiri, J.;Navayinia, B.;Navaei, S.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.5
    • /
    • pp.717-732
    • /
    • 2011
  • Nonlinear dynamic analysis and evaluation of eccentric braced steel frames (EBF) equipped with friction damper (FD) is studied in this research. Previous studies about assessment of seismic performance of steel braced frame with FD have been generally limited to installing this device in confluence of cross in concentrically braced frame such chevron and x-bracing. Investigation is carried out with three types of steel frames namely 5, 10 and 15 storeys, representing the short, medium and high structures respectively in series of nonlinear dynamic analysis and 10 slip force values subjected to three different earthquake records. The proper place of FD, rather than providing them at all level is also studied in 15 storey frame. Four dimensionless indices namely roof displacement, base shear, dissipated energy and relative performance index (RPI) are determined in about 100 nonlinear dynamic analyses. Then average values of maximum roof displacement, base shear, energy dissipated and storey drift under three records for both EBF and EBF equipped with friction damper are obtained. The result indicates that FD reduces the response compared to EBF and is more efficient than EBF for taller storey frames.

Nonlinear modeling parameters of RC coupling beams in a coupled wall system

  • Gwon, Seongwoo;Shin, Myoungsu;Pimentel, Benjamin;Lee, Deokjung
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.817-842
    • /
    • 2014
  • ASCE/SEI 41-13 provides modeling parameters and numerical acceptance criteria for various types of members that are useful for evaluating the seismic performance of reinforced concrete (RC) building structures. To accurately evaluate the global performance of a coupled wall system, it is crucial to first properly define the component behaviors (i.e., force-displacement relationships of shear walls and coupling beams). However, only a few studies have investigated on the modeling of RC coupling beams subjected to earthquake loading to date. The main objective of this study is to assess the reliability of ASCE 41-13 modeling parameters specified for RC coupling beams with various design details, based on a database compiling almost all coupling beam tests available worldwide. Several recently developed coupling beam models are also reviewed. Finally, a rational method is proposed for determining the chord yield rotation of RC coupling beams.

Analysis of seismic behavior of composite frame structures

  • Zhao, Huiling
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.719-729
    • /
    • 2016
  • There are great needs of simple but reliable mechanical nonlinear behavior analysis and performance evaluation method for frames constructed by steel and concrete composite beams or columns when the structures subjected extreme loads, such as earthquake loads. This paper describes an approach of simplified macro-modelling for composite frames consisting of steel-concrete composite beams and CFST columns, and presents the performance evaluation procedure based on the pushover nonlinear analysis results. A four-story two-bay composite frame underground is selected as a study case. The establishment of the macro-model of the composite frame is guided by the characterization of nonlinear behaviors of composite structural members. Pushover analysis is conducted to obtain the lateral force versus top displacement curve of the overall structure. The identification method of damage degree of composite frames has been proposed. The damage evolution and development of this composite frame in case study has been analyzed. The failure mode of this composite frame is estimated as that the bottom CFST columns damage substantially resulting in the failure of the bottom story. Finally, the seismic performance of the composite frame with high strength steel is analyzed and compared with the frame with ordinary strength steel, and the result shows that the employment of high strength steel in the steel tube of CFST columns and steel beam of composite beams benefits the lateral resistance and elasticity resuming performance of composite frames.

Pseudo-dynamic test of the steel frame - Shear wall with prefabricated floor structure

  • Han, Chun;Li, Qingning;Jiang, Weishan;Yin, Junhong;Yan, Lei
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.431-445
    • /
    • 2016
  • Seismic behavior of new composite structural system with a fabricated floor was studied. A two-bay and three-story structural model with the scale ratio of 1/4 was consequently designed. Based on the proposed model, multiple factors including energy dissipation capacity, stiffness degradation and deformation performance were analyzed through equivalent single degree of freedom pseudo-dynamic test with different earthquake levels. The results show that, structural integrity as well as the effective transmission of the horizontal force can be ensured by additional X bracing at the bottom of the rigidity of the floor without concrete topping. It is proved that the cast-in-place floor in areas with high seismic intensity can be replaced by the prefabricated floor without pouring surface layer. The results provide a reliable theoretical basis for the seismic design of the similar structural systems in engineering application.

How to reduce short column effects in buildings with reinforced concrete infill walls on basement floors

  • Bikce, Murat
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.249-259
    • /
    • 2011
  • Band windows are commonly used in reinforced concrete structures for the purpose of ventilation and lighting. These applications shorten the lengths of the columns and, consequently, they are subject to higher shear forces as compared with those of hollow frames. Such short columns may cause some damages during earthquakes. Hence, these effects of short columns should be minimized by choosing the dimensions of the band windows properly in order to prevent serious damages in the structure. This can be achieved by taking into account the parameters that are crucial in causing short column effect. Hence, in this study, the effects of those parameters such as the widths and heights of the band windows, the number of bays and storeys within the frame, and the heights of storeys are examined. The effects of the parameters are analyzed using time history analysis. One of the important results of these analyses, is that, the widths of the band windows should be less than 60% of the clear span between the columns, whereas, their heights should be greater than 35% of the clear storey height in order to decrease the short column effects substantially during the design of the reinforced concrete structures.

A Failure Estimation Method of Steel Pipe Elbows under In-plane Cyclic Loading

  • Jeon, Bub-Gyu;Kim, Sung-Wan;Choi, Hyoung-Suk;Park, Dong-Uk;Kim, Nam-Sik
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.245-253
    • /
    • 2017
  • The relative displacement of a piping system installed between isolated and nonisolated structures in a severe earthquake might be larger when without a seismic isolation system. As a result of the relative displacement, the seismic risks of some components in the building could increase. The possibility of an increase in seismic risks is especially high in the crossover piping system in the buildings. Previous studies found that an elbow which could be ruptured by low-cycle ratcheting fatigue is one of the weakest elements. Fatigue curves for elbows were suggested based on component tests. However, it is hard to find a quantitative evaluation of the ultimate state of piping elbows. Generally, the energy dissipation of a solid structure can be calculated from the relation between displacement and force. Therefore, in this study, the ultimate state of the pipe elbow, normally considered as failure of the pipe elbow, is defined as leakage under in-plane cyclic loading tests, and a failure estimation method is proposed using a damage index based on energy dissipation.