• Title/Summary/Keyword: earthquake energy

Search Result 908, Processing Time 0.027 seconds

A two-stage Kalman filter for the identification of structural parameters with unknown loads

  • He, Jia;Zhang, Xiaoxiong;Feng, Zhouquan;Chen, Zhengqing;Cao, Zhang
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.693-701
    • /
    • 2020
  • The conventional Kalman Filter (KF) provides a promising way for structural state estimation. However, the physical parameters of structural systems or models should be available for the estimation. Moreover, it is not applicable when the loadings applied to the structures are unknown. To circumvent the aforementioned limitations, a two-stage KF with unknown input approach is proposed for the simultaneous identification of structural parameters and unknown loadings. In stage 1, a modified observation equation is employed. The structural state vector is estimated by KF on the basis of structural parameters identified at the previous time-step. Then, the unknown input is identified by Least Squares Estimation (LSE). In stage 2, based on the concept of sensitivity matrix, the structural parameters are updated at the current time-step by using the estimated structural states obtained from stage 1. The effectiveness of the proposed approach is numerically validated via a five-story shearing model under random and earthquake excitations. Shaking table tests on a five-story structure are also employed to demonstrate the performance of the proposed approach. It is demonstrated from numerical and experimental results that the proposed approach can be used for the identification of parameters of structure and the external force applied to it with acceptable accuracy.

A Comparison Study of the Amplification Characteristics of the Seismic Station near Yedang Reservoir using Background Noise, S-wave and Coda wave Energy (배경잡음, S파 및 Coda파 에너지를 이용한 예당저수지 인근부지의 지반증폭 특성에 관한 비교 연구)

  • Wee, Soung-Hoon;Kim, Jun-Kyoung;Yoo, Seong-Hwa;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.36 no.7
    • /
    • pp.632-642
    • /
    • 2015
  • Seismograms are composed of 3 characteristics, that is, seismic source, attenuation, and site amplification. Among them, site amplification characteristics should be considered significantly to estimate seismic source and attenuation characteristics with more confidence. This purpose of this study is to estimate the site amplification characteristics at each site using horizontal to vertical (H/V) spectral ratio method. This method, originally proposed by Nakamura (1989), has been applied to study the surface waves in microtremor records. It has been recently extended to the shear wave energy of strong motion and applied to the study of site amplification. This study analyzed the H/V spectral ratio of 6 ground motions respectively using observed data from 4 sites nearby in Yedang Reservoir. And then, site amplification effects at each site, from 3 kinds of seismic energies, that is, S waves, Coda waves energy, and background noise were compared each other. The results suggested that 4 sites showed its own characteristics of site amplification property in specific resonance frequency ranges (YDS: ~11 Hz, YDU: ~4 Hz, YDD: ~7 Hz). Comparison of this study to other studies using different analysis method can give us much more information about dynamic amplification of domestic sites characteristics and site classification.

The Dynamic Basement Amplification Characteristics of a Dam Site using a Reference Site Method (기준관측소 방법을 이용한 댐체 기반암의 동적 지반증폭특성)

  • Wee, Soung-Hoon;Kim, Jun-Kyoung;Yoo, Seong-Hwa
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.161-171
    • /
    • 2017
  • Observed ground motions are composed of three factors such as, seismic source, attenuation, and site amplification effect. Among them, the site amplification characteristics should be considered significantly when estimating seismic source and attenuation characteristics with more confidence. The site effect is also necessary when estimating not only seismic hazard in seismic design engineering but also rock mechanical properties. This study uses the method of H/V spectral ratio of observed ground motion between target site and reference site called a reference site method. In addition to using the vertical Fourier spectrum of the reference site, we try out the horizontal Fourier spectrum as a new method in this study. We analyze H/V spectral ratio of six ground motions respectively, observed at four sites close to Yedang Reservoir. We then compare site amplification effects at each site using 3 kinds of seismic energies including S waves, Coda waves energy, and background noise. The results suggest that each site showed similar site amplification patterns in S waves and Coda waves energy. However, the site amplification of background noise shows much different characteristics from those of S waves and Coda wave energy, which suggests that the background noises at each site have their own developing mechanism. Each station shows its own characteristics of specific resonance frequency and site amplification properties in low, high and specific resonance frequency ranges. Comparison of the method used in this study to the others that used different methods can provide us with more information about the dynamic amplification of a site characteristics and site classification.

Improvement of Seismic Performance of Long-span Bridges using Complex Dampers (복합감쇠기를 이용한 장대교량의 내진성능향상)

  • Ha, Dong-Ho;Park, Kwan-Soon;Park, Won-Suk;Pyeon, Mu-Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.53-62
    • /
    • 2007
  • This paper presents a new vibration control method for long-span bridges using complex damper system. The new system presents simple mechanical configuration with oil and elasto-plastic dampers which have velocity and displacement dependency in vibration energy absorbing. This system can produce various damping forces according to the applied external forces by the velocity and displacement-dependent characteristics of the dampers. The oil damper dissipates vibration energy for relatively frequent and small amplitude like in the case for small to moderate earthquakes, whereas the elasto-plastic damper system works for rare and large amplitude vibration such as high seismic excitation. Thus, the proposed system exhibits the advantage of low cost with high performance since the roles of the two different dampers are effectively separated. A numerical model is established for the complex damper system, and the response characteristics and effectiveness of the proposed system are presented through numerical simulations. Numerical results show that the proposed complex damper system can significantly improve the seismic performance of long-span bridge structures with much more effective damping mechanism than single conventional passive damper systems.

Evaluation of Seismic Performance of Prefabricated Bridge Piers with a Circular Solid Section (중실원형단면 조립식 교각의 내진 성능 평가)

  • Kim, Hyun-Ho;Shim, Chang-Su;Chung, Chul-Hun;Kim, Cheol-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.23-31
    • /
    • 2007
  • Fast bridge construction has been increasingly needed according to the changed construction environment. This paper deals with quasi-static tests on precast piers for bridge substructures. One of the most crucial aspect of the design of precast prestressed concrete bridge piers is the seismic performance. Seven precast pier elements were fabricated. The amount of prestressing bars, the prestressing force, and the location and number of the joint between segments were the main test parameters. Test results showed that the introduced axial prestress made the restoration of the deformation under small lateral displacement and minor damage. However, there was no effect of the prestress when the plastic hinge region was damaged severely due to large lateral displacement. Judging from the observed damage, the design of the joints in precast piers should be done for the first joint between the foundation and the pier segment. The amount of the necessary prestressing steel may be designed to satisfy the P-M diagram according to the service loads, not by having the same steel ratio as normal RC bridge piers. In order to satisfy the current required displacement ductility, it is necessary to have the same amount of the transverse reinforcements as RC piers. As the steel ratio increases, the energy absorption capacity increases. The number of joints showed a little influence on the energy absorption capacity.

Unified plastic-damage model for concrete and its applications to dynamic nonlinear analysis of structures

  • Wu, Jian-Ying;Li, Jie
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.519-540
    • /
    • 2007
  • In this paper, the energy-based plastic-damage model previously proposed by the authors [International Journal of Solids and Structures, 43(3-4): 583-612] is first simplified with an empirically defined evolution law for the irreversible strains, and then it is extended to its rate-dependent version to account for the strain rate effect. Regarding the energy dissipation by the motion of the structure under dynamic loadings, within the framework of continuum damage mechanics a new damping model is proposed and incorporated into the developed rate-dependent plastic-damage mode, leading to a unified constitutive model which is capable of directly considering the damping on the material scale. Pertinent computational aspects concerning the numerical implementation and the algorithmic consistent modulus for the unified model are also discussed in details, through which the dynamic nonlinear analysis of damping structures can be coped with by the same procedures as those without damping. The proposed unified plastic-damage model is verfied by the simulations of concrete specimens under different quasistatic and high rate straining loading conditions, and is then applied to the Koyna dam under earthquake motions. The numerical predictions agree fairly well with the results obtained from experimental tests and/or reported by other investigators, demonstrating its capability for reproducing most of the typical nonlinear performances of concrete under quasi-static and dynamic loading conditions.

A Buoyant Combined Solar-Wave Power Generation and Its Application for Emergency Power Supply of Nuclear Power Plant (부유식 태양광-파력 복합발전 개념 및 원자력발전소 비상전원을 위한 응용)

  • Cha, Kyung-Ho;Kim, Jung-Taek
    • New & Renewable Energy
    • /
    • v.7 no.4
    • /
    • pp.37-41
    • /
    • 2011
  • This paper presents a Combined solar-wave Power Generation (CPG) concept that the CPG unit is maintained as buoyant at the level of sea water and it is also supported by a submerged tunnel, with the aim of supplying emergency electric power during the station blackout events of nuclear power plants. The CPG concept has been motivated from the 2011 Fukushima-Daiichi Accidents due to the loss of both offsite AC power and emergency diesel power caused by natural hazards such as earthquake and tsunami. The CPG is conceptualized by applying different types and different sites for emergency power generation, in order to reduce common cause failures of emergency power suppliers due to natural hazards. Thus, the CPG can provide a new mean for supplying emergency electric power during station blackout events of nuclear power plants. For this application, the CPG requirements are described with a typical configuration at the ocean side of a submerged tunnel.

Plastic hinge length of RC columns considering soil-structure interaction

  • Mortezaei, Alireza
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.679-702
    • /
    • 2013
  • During an earthquake, soils filter and send out the shaking to the building and simultaneously it has the role of bearing the building vibrations and transmitting them back to the ground. In other words, the ground and the building interact with each other. Hence, soil-structure interaction (SSI) is a key parameter that affects the performance of buildings during the earthquakes and is worth to be taken into consideration. Columns are one of the most crucial elements in RC buildings that play an important role in stability of the building and must be able to dissipate energy under seismic loads. Recent earthquakes showed that formation of plastic hinges in columns is still possible as a result of strong ground motion, despite the application of strong column-weak beam concept, as recommended by various design codes. Energy is dissipated through the plastic deformation of specific zones at the end of a member without affecting the rest of the structure. The formation of a plastic hinge in an RC column in regions that experience inelastic actions depends on the column details as well as soil-structure interaction (SSI). In this paper, 854 different scenarios have been analyzed by inelastic time-history analyses to predict the nonlinear behavior of RC columns considering soil-structure interaction (SSI). The effects of axial load, height over depth ratio, main period of soil and structure as well as different characteristics of earthquakes, are evaluated analytically by finite element methods and the results are compared with corresponding experimental data. Findings from this study provide a simple expression to estimate plastic hinge length of RC columns including soil-structure interaction.

Design of Friction Dampers for Seismic Response Control of a SDOF Building (단자유도 건물의 지진응답제어를 위한 마찰감쇠기 설계)

  • Min, Kyung-Won;Seong, Ji-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.22-28
    • /
    • 2010
  • Approximate analysis for a building installed with a friction damper is performed to get insight of its dynamic behavior. Energy balance equation is used to have a closed analytical form solution of dynamic magnification factor(DMF). It is found out that DMF is dependent on friction force ratio and resonance frequency. Approximation of DMF and equivalent damping ratio of a friction damper is proposed with such assumption that the building with a friction damper shows harmonic steady-state response and narrow banded response behavior near resonance frequency. Linear transfer function from input external force to output building displacement is suggested from the simplified DMF equation. Root mean square of a building displacement is derived under earthquake-like random excitation. Finally, design procedure of a friction damper is proposed by finding friction force corresponding to target control ratio. Numerical analysis is carried out to verify the proposed design procedure.

Seismic Performance Evaluation of System to Protect the Occurrence of Weak-Story With Braced Frame (중심 가새 골조에 형성되는 연약층을 방지하기 위한 시스템의 내진 성능 평가)

  • Kim, Da-Young;Yoo, Jung-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.4
    • /
    • pp.45-52
    • /
    • 2019
  • The purpose of the paper is to introduce a system that reduces the occurrence of weak-story in the event of earthquake. Weak-story concentrates deformation on the story and causes all member to collapse before the capacity of all member is reached. This paper introduces Strong-Back system (SB) to protect weak story. SB is a hybrid of zipper frame, tied eccentrically braced frame, and elastic truss system and it is divided into elastic and inelastic areas. Elastic areas prevent the generation of weak story by distributing energy, and inelastic areas dissipate energy through buckling or yielding. In this paper, the seismic performance is evaluated by comparing the four type braced frame with SB through push-over analysis. The four criteria are compared from the base shear, the ductility capacity, the column failure order, and the quantity of brace. As a result, SB proved to have sufficient performance to protect the weak-story.