• Title/Summary/Keyword: earth systems education

Search Result 138, Processing Time 0.029 seconds

The Development and Applying Effects of Systems Thinking Teaching Program for Improving Recognition of the Earth Systems in Elementary Science Education (초등과학교육에서 지구시스템 인식강화를 위한 시스템사고 교육 프로그램 개발 및 적용효과)

  • Moon, Byoung-Chan
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.7 no.3
    • /
    • pp.313-326
    • /
    • 2014
  • The purpose of this study is to explore the applying possibility of the Earth Systems Education(ESE) in elementary school science education through the improving of students' recognition with the earth systematic nature by systems thinking education - for this was the recognizing as earth systematic nature was the key element of ESE, and the systems thinking skill is accredited very effective tool for the understanding with earth systematic nature. For this, the systems thinking's teaching-learning programs were developed and applied to the 6th students (21s) for 10hours' classes. The results of this study are as follows; In most of the 6th students didn't recognize with earth systematic nature from a lack of understanding of the vapor being in every nature environments. In systems teaching-learning classes, most of students participated positively in learning activities and achieved the aim of a lesson. In the testing results for students' recognition improving to earth systematic nature after the systems thinking education, about 24% students were showed the improving results of the recognition with earth systematic nature. Consequently, It is suggested that just as the achieving of the points of ESE in elementary school science education, the approaching method of the systems thinking education is worth attempting to applying of the ESE.

Field Application of Earth Systems Education (지구계 교육의 현장적용에 관한 연구)

  • Lim, Eun-kyoung;Hong, Sang-Wook;Jeong, Jin-Woo
    • Journal of the Korean earth science society
    • /
    • v.21 no.2
    • /
    • pp.93-102
    • /
    • 2000
  • The purpose of this study is to investigate Earth Systems Education, its matter and also its possibility of practical application in Korea. Some attempts are made to see the value of the Earth Systems Education. Adopting two kinds of Korean science textbooks of middle school and activity of Earth Systems Education were analyzed. The interview with teachers is implemented for the study on objective, the structure of matter and teaching strategy in Earth Systems Education. The program is given to 96 students(2 classes, the first grade at middle school). To analyze the effect of Earth Systems Education program, students were interviewed by their teacher. The conclusions of this study are as follows: 1. The Earth Systems Education is contributed to the way to enable students to have a cognitive perspective about the earth and to look for the nature. Earth Systems Education is to use interdisciplinary approaches for integration in science. 2. The result of analysis in the contents of Korean science textbooks, the viewpoints about Earth Systems Education were not found, but the accounts about the interactions among subsystems were found. 3. According to the results of interview with teachers, they approve of system approach, the structure of matter and teaching strategy of Earth Systems Education. 4. According to the results of interview with students, they understand the interactions among subsystems which are elements of Earth Systems. As a results, Earth Systems Education is a effective method for informed judgements about Earth and science and manner for work for integration in science curriculum. So Earth Systems Education be applied to science education in Korea.

  • PDF

Understandings on the Cycle as a substance and ESE (지구계 교육과 소재로서 순환에 대한 이해)

  • Kim, Yun-Ji;Jeong, Jin-Woo
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.8
    • /
    • pp.951-962
    • /
    • 2009
  • Examining research papers and other texts on the subject, this study summarizes previous studies, with focus on circulation as a subtopic of Earth Systems Education. In relation to the Earth Systems unit included in the revised 10th-grade science textbook, this study explains the meaning of Earth Systems and the basic concepts of Earth System Science. It surveys the origin and application of Earth Systems Education, which developed primarily in the U. S., and introduces its objectives, concepts, and communicated content. It also reviews the contents of Earth Systems Education adopted in the Korean school curriculum, and provides a comparative analysis of the content on circulation appearing in Earth Science I textbooks. Finally, it is proposed that an understanding among educators of Earth Systems and of its necessity as a subject of education is imperative for Earth Systems Education to become firmly established as a compulsory component of the national school curriculum.

The Impact of Self-Reported Knowledge and Self-perceived Importance about Earth Systems on Science Gifted Students' Science Motivation: An Exploratory Study (과학 영재 학생의 지구계에 대한 지식과 중요성이 과학 동기에 미치는 영향: 탐색적 연구)

  • Oh, Jun-Young;Lee, Hyundong;Lee, Hyonyong
    • Journal of the Korean earth science society
    • /
    • v.36 no.6
    • /
    • pp.580-590
    • /
    • 2015
  • The purpose of this study was to investigate the correlation among science gifted students' self-reported knowledge and self-perceived importance about Earth systems, and their science motivation. Ninety three seventh graders participated in this study who enrolled at Science Gifted Institute of K university. The correlation was measured by a validated Earth systems survey and Science Motivation Questionnaire (SMQ). The data were analyzed at the margin of error probability 0.05 using correlation and regression analysis. The result of reliability for items turned out high because the Cronbach's alphas were .896~.937. Results indicated that the correlation between self-reported knowledge on Earth systems and science motivation showed a correlation coefficient .656, whereas the correlation between importance on Earth systems and science motivation was .387, which was regarded as low. On the other hands, the result of regression analysis depicted that non-std. coefficients between students' self-reported knowledge about Earth systems and science motivation were .548 (.077), which lead to the conclusion that students' knowledge on Earth systems explained 43% of science motive-variation. It implied that Earth systems education program could impact the increased motivation of science gifted-students. Therefore, this study suggests that the various Earth systems education programs could be developed and implemented in order to increase students' motivation on studying science in general and Earth science in specific.

Earth Science in the Perspectives of Environmental Education (지구과학과 환경 교육)

  • Shin, Dong-Hee
    • Journal of the Korean earth science society
    • /
    • v.22 no.2
    • /
    • pp.147-158
    • /
    • 2001
  • Recently, with the increase of environmental problems, the importance of environmental education has also been emphasized. Science is a subject that enormously contributes to education about the environment, education in the environment, and education for the environment. Among various fields of science, earth science has a large amount of contents related environmental education, from the perspectives that the subjects of earth science are natural and artificial changes in the earth surface. Accordingly, it is clear that earth science education can play an important role in environmental education. This is proved in the fact that the goal and specifics of earth systems education coincidence with those of environmental education. Earth science curriculum in Korea, however, contains few contents related to environmental education. Earth science education that concerns our environment as a whole will help not only catch a new interest on the field of earth science but actively participate in solving our environmental problems.

  • PDF

A Review of Teachers' Pedagogical Content Knowledge and Subject Matter Knowledge for Teaching Earth System Concepts

  • Roehrig, Gillian H.;Nam, Youn-Kyeong
    • Journal of the Korean earth science society
    • /
    • v.32 no.5
    • /
    • pp.494-503
    • /
    • 2011
  • During the last three decades, earth science has been re-conceptualized as an interdisciplinary discipline entitled Earth System Science (ESS), which is based on knowledge of the physical earth system and human impact on the earth. While there is increasing effort to teach earth as a system in K-12 education, teachers' preparedness of to teach earth system is still in its infancy. This article focuses on reviewing the literature of teachers' knowledge of earth systems and of how teachers' knowledge of subject matter affects their teaching practice and pedagogical content knowledge (PCK). First, the study investigated a literature of PCK in general as well as in science teaching. Then this study duscuss what teachers' subject matter knowledge (SMK) is and what it means to be in teaching earth system science. Third, a literature of teachers' knowledge of earth system was reviewed. Finally, a number of suggestions and implications are made as to what teacher education program should do to better prepare future teachers to teach earth systems.

Related Conception s to Earth System and Applying of Systems Thinking about Carbon Cycle of the Preservice Teachers (예비교사들의 탄소 순환에 대한 지구시스템의 관련개념과 시스템 사고의 적용)

  • Jeong, Jin-Woo;kyung, Jai-Bok;Koh, Yeong-Koo;Youn, Seok-Tae;Kim, Hai-Gyoung;Oh, Kang-Ho;Moon, Byoung-Chan
    • Journal of the Korean earth science society
    • /
    • v.25 no.8
    • /
    • pp.684-696
    • /
    • 2004
  • Using six preservice teachers as subjects, this was purpose to research about concepts in understanding carbon cycle, which of concepts were related to the conception of the system, and finally whether or not the systems thinking was sufficiently around carbon cycle. To achieve this study purpose , an instrument related to carbon cycle was developed and administered to the six teachers. The study found that a total of 42 conceptions within the system were concepts related to carbon cycle. The consisted of 15 conceptions in atmosphere, 11 in atmosphere 9 in hydrosphere, and 7 in lithosphere. In aspect of applying the system thinking, 4 subjects who couldn't compose the feedback loop in their causal map failed to apply this type of thinking. The other two who applied systems thinking had 2 and 1 feedback loop each, in their causal maps. But, one of the feedback loop from the subject who made two was based on unscientific reasoning. As a result, the subjects had lower understanding of concepts related to carbon cycle in lithosphere than in atmosphere, atmosphere, and hydrosphere. Futhermore, the subjects' application of the earth systems thinking on carbon was at a low standard.

Gifted Elementary Students' Understandings about Earth Systems and Environmental Problems (지구계와 환경문제에 대한 초등학교 과학영재학생들의 인식)

  • Jung, Jaehwa;Lee, Hyonyong;Go, Soojin;Oh, YoungJai
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.672-682
    • /
    • 2012
  • The purpose of this study is to investigate elementary school science gifted students' perceptions about Earth systems and environmental problems. A total of 28 students in the attached center for science gifted education to the university participated in this study. Through the survey, participating students were asked to respond to their self-reported knowledge level, the perceived danger levels, certainty, and tangibility of the selected 13 Earth environmental problems. The DAET (Draw-An-Earth Test)-Checklist were developed and used to analyze the images of the Earth drawn by students. Additional interviews were conducted to clarify the meanings and components of students' image. Results indicated that a total of 80 components regarding Earth systems, 11 components of Earth systems interaction, and 4 components related to Earth systems literacy were identified through the DAET-Checklist and additional interviews. Regarding the students' self-reported knowledge level, they reported that they were most knowledgeable about air pollution, global warming, and water pollution. and they also recognized global warming, air pollution, and water pollution as the most dangerous problem. Results indicated that participants were certain that acid rain, air pollution, and water pollution were problematic, and that acid rain, air pollution, and forest desertification were tangible issues. It is anticipated that this study contributes to understanding the elementary school science gifted students' perceptions toward the selected Earth systems and environmental problems.

An Analysis of Students' Cognitive Characteristics through a Drawing Activity in Teaching Module of the Earth Systems Education (지구계 수업 모듈 중 그리기 활동을 통한 학생들의 인지 특성 분석)

  • Oh, Hyun-Seok;Kim, Je-Heung;Yu, Eun-Jeong;Kim, Chan-Jong
    • Journal of the Korean earth science society
    • /
    • v.30 no.1
    • /
    • pp.96-110
    • /
    • 2009
  • The ESE (Earth Systems Education) teaching module was developed to teach an "Earth and Star" unit for the 8th grade (aged 14) students. The planet remodeling activity was developed as a sub-ESE teaching module. The main point of this activity was that students were supposed to remodel planets for life to live on. The purpose of this study was to visualize students' thought and to interpret their understandings through their drawings and writings. A framework of analysis with four categories was designed and applied to analyze students' cognitive structure. In order to explore students' cognitive contents, the analyzing factors were classified into two domains: subsystems of the earth systems and use of science & technology. Results revealed via the planet remodeling activity that students' cognitive characteristics were impacted by ESE activities such as Earth literacy.

Developing a Framework of Conceptual Understandings of Earth Systems

  • Nam, Younkyeong
    • Journal of the Korean earth science society
    • /
    • v.37 no.5
    • /
    • pp.309-322
    • /
    • 2016
  • This paper presents an analytical framework of Conceptual Understandings of Earth Systems (CUES) that shows a relationship between disciplinary knowledge of Earth systems and the specific thinking skills required to understand that knowledge. This framework is developed through an extensive literature review of students' and teachers' understandings of earth systems concepts and systems thinking in earth science context. This study first presents the categories of disciplinary knowledge of Earth systems, Earth System Knowledge (ESK). This study then illustrates a relationship between categories of ESK and the ontological categories (Matter, Process, Systems) that has been used to study students' conceptual understandings of Earth systems. Finally, this study presents the CUES framework to show the relationship between disciplinary knowledge and thinking skills. The implications of using this framework for curriculum development, assessment, and teacher education and ESS research are discussed.