• Title/Summary/Keyword: earth system science

Search Result 1,599, Processing Time 0.042 seconds

Quantification of Turbulence Characteristics on the Concentration Distributions of Traffic-related Pollutants Near Roadways (도로변 난류특성과 교통량에 따른 차량유발 난류강도 정량화: 도로변 풍상/풍하 측에서의 3차원 풍속 동시 측정에 기반)

  • Yongmi Park;Subin Han;HanGyeol Song;Seung-Bok Lee;Kyung-Hwan Kwak;Changhyuk Kim;Wonsik Choi
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.343-354
    • /
    • 2023
  • Turbulence produced on roadways is one of the major factors determining the dilution rates at the initial stage of traffic emissions of air pollutants and, thus, the distribution of air pollutants near the roadways. Field experiments were conducted on Gyeongbu Highway, one of the busiest highways in Korea, for 4~7 days in winter, spring, and summer. Two three-dimensional ultrasonic anemometers were installed on both sides of the highway to estimate turbulence intensities (vertical wind fluctuation and kinetic turbulence energy) induced by the roadway. Roadway-induced turbulence consists of three components: structural road-induced turbulence (S-RIT), thermal road-induced turbulence (T-RIT), and vehicle-induced turbulence (VIT). The contribution of T-RIT to the total RIT was insignificant (less than 10%), and the majority of RIT was S-RIT (by the highway embankment) and VIT. In this study, we propose the empirical relationships of VIT as a function of traffic density and wind speed under free-flow traffic conditions. Although this empirical relationship appears to underestimate the VIT, it can be applied to the air quality models easily because the relationship is simple and only needs readily obtainable input variables (wind speed and traffic information).

Preliminary numerical analysis of controllable prestressed wale system for deep excavation

  • Lee, Chang Il;Kim, Eun Kyum;Park, Jong Sik;Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1061-1070
    • /
    • 2018
  • The main purpose of retaining wall methods for deep excavation is to keep the construction site safe from the earth pressure acting on the backfill during the construction period. Currently used retaining wall methods include the common strut method, anchor method, slurry wall method, and raker method. However, these methods have drawbacks such as reduced workspace and intrusion into private property, and thus, efforts are being made to improve them. The most advanced retaining wall method is the prestressed wale system, so far, in which a load corresponding to the earth pressure is applied to the wale by using the tension of a prestressed (PS) strand wire. This system affords advantages such as providing sufficient workspace by lengthening the strut interval and minimizing intrusion into private properties adjacent to the site. However, this system cannot control the tension of the PS strand wire, and thus, it cannot actively cope with changes in the earth pressure due to excavation. This study conducts a preliminary numerical analysis of the field applicability of the controllable prestressed wale system (CPWS) which can adjust the tension of the PS strand wire. For the analysis, back analysis was conducted through two-dimensional (2D) and three-dimensional (3D) numerical analyses based on the field measurement data of the typical strut method, and then, the field applicability of CPWS was examined by comparing the lateral deflection of the wall and adjacent ground surface settlements under the same conditions. In addition, the displacement and settlement of the wall were predicted through numerical analysis while the prestress force of CPWS was varied, and the structural stability was analysed through load tests on model specimens.

Retrieval of Nitrogen Dioxide Column Density from Ground-based Pandora Measurement using the Differential Optical Absorption Spectroscopy Method (차등흡수분광기술을 이용한 지상기반 Pandora 관측으로부터의 대기 중 이산화질소 칼럼농도 산출)

  • Yang, Jiwon;Hong, Hyunkee;Choi, Wonei;Park, Junsung;Kim, Daewon;Kang, Hyeongwoo;Lee, Hanlim;Kim, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.981-992
    • /
    • 2017
  • We, for the first time, retrieved tropospheric nitrogen dioxide ($Trop.NO_2$) vertical column density (VCD) from ground-based instrument, Pandora, using the optical density fitting based on Differential Optical Absorption Spectroscopy (DOAS)in Seoul for the period from May 2014 to December 2014. The $Trop.NO_2$ VCDs retrieved from Pandora were compared with those obtained from Ozone Monitoring Instrument (OMI). A correlation coefficient (R) between those retrieved from Pandora and those obtained from OMI is 0.55. To compare with surface $NO_2$ VMRs obtained from in-situ, Trop. $NO_2$ VCDs retrieved from Pandora and those obtained from OMI are converted into $NO_2$ VMRs in boundary layer (BLH $NO_2$ VMRs) using data measured from Atmospheric Infrared Sounder (AIRS). Surface $NO_2$ VMRs obtained from in-situ range from 5.5 ppbv to 61.5 ppbv. BLH $NO_2$ VMRs retrieved from Pandora and OMI range from 2.1 ppbv to 44.2 ppbv and from 0.9 ppbv to 11.6 ppbv, respectively. The range of BLH $NO_2$ VMRs retrieved from OMI is narrower than that of BLH $NO_2$ VMRs retrieved from Pandora and surface $NO_2$ VMRs obtained from in-situ. There is a batter correlation between surface $NO_2$ VMRs obtained from in-situ and BLH $NO_2$ VMRs retrieved from Pandora (R= 0.50)than the correlation between surface $NO_2$ VMRs obtained from in-situ and BLH $NO_2$ VMRs retrieved from OMI (R = 0.36). This poor correlation is thought to be due to the lower near-surface sensitivity of the satellite-based instrument (OMI) than Pandora, the ground-based instrument.

A Study of the Influence of Short-Term Air-Sea Interaction on Precipitation over the Korean Peninsula Using Atmosphere-Ocean Coupled Model (기상-해양 접합모델을 이용한 단기간 대기-해양 상호작용이 한반도 강수에 미치는 영향 연구)

  • Han, Yong-Jae;Lee, Ho-Jae;Kim, Jin-Woo;Koo, Ja-Yong;Lee, Youn-Gyoun
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.584-598
    • /
    • 2019
  • In this study, the effects of air-sea interactions on precipitation over the Seoul-Gyeonggi region of the Korean Peninsula from 28 to 30 August 2018, were analyzed using a Regional atmosphere-ocean Coupled Model (RCM). In the RCM, a WRF (Weather Research Forecasts) was used as the atmosphere model whereas ROMS (Regional Oceanic Modeling System) was used as the ocean model. In a Regional Single atmosphere Model (RSM), only the WRF model was used. In addition, the sea surface temperature data of ECMWF Reanalysis Interim was used as low boundary data. Compared with the observational data, the RCM considering the effect of air-sea interaction represented that the spatial correlations were 0.6 and 0.84, respectively, for the precipitation and the Yellow Sea surface temperature in the Seoul-Gyeonggi area, which was higher than the RSM. whereas the mean bias error (MBE) was -2.32 and -0.62, respectively, which was lower than the RSM. The air-sea interaction effect, analyzed by equivalent potential temperature, SST, dynamic convergence fields, induced the change of SST in the Yellow Sea. In addition, the changed SST caused the difference in thermal instability and kinematic convergence in the lower atmosphere. The thermal instability and convergence over the Seoul-Gyeonggi region induced upward motion, and consequently, the precipitation in the RCM was similar to the spatial distribution of the observed data compared to the precipitation in the RSM. Although various case studies and climatic analyses are needed to clearly understand the effects of complex air-sea interaction, this study results provide evidence for the importance of the air-sea interaction in predicting precipitation in the Seoul-Gyeonggi region.

Kriging of Daily PM10 Concentration from the Air Korea Stations Nationwide and the Accuracy Assessment (베리오그램 최적화 기반의 정규크리깅을 이용한 전국 에어코리아 PM10 자료의 일평균 격자지도화 및 내삽정확도 검증)

  • Jeong, Yemin;Cho, Subin;Youn, Youjeong;Kim, Seoyeon;Kim, Geunah;Kang, Jonggu;Lee, Dalgeun;Chung, Euk;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.379-394
    • /
    • 2021
  • Air pollution data in South Korea is provided on a real-time basis by Air Korea stations since 2005. Previous studies have shown the feasibility of gridding air pollution data, but they were confined to a few cities. This paper examines the creation of nationwide gridded maps for PM10 concentration using 333 Air Korea stations with variogram optimization and ordinary kriging. The accuracy of the spatial interpolation was evaluated by various sampling schemes to avoid a too dense or too sparse distribution of the validation points. Using the 114,745 matchups, a four-round blind test was conducted by extracting random validation points for every 365 days in 2019. The overall accuracy was stably high with the MAE of 5.697 ㎍/m3 and the CC of 0.947. Approximately 1,500 cases for high PM10 concentration also showed a result with the MAE of about 12 ㎍/m3 and the CC over 0.87, which means that the proposed method was effective and applicable to various situations. The gridded maps for daily PM10 concentration at the resolution of 0.05° also showed a reasonable spatial distribution, which can be used as an input variable for a gridded prediction of tomorrow's PM10 concentration.

A Comparison between Multiple Satellite AOD Products Using AERONET Sun Photometer Observations in South Korea: Case Study of MODIS,VIIRS, Himawari-8, and Sentinel-3 (우리나라에서 AERONET 태양광도계 자료를 이용한 다종위성 AOD 산출물 비교평가: MODIS, VIIRS, Himawari-8, Sentinel-3의 사례연구)

  • Kim, Seoyeon;Jeong, Yemin;Youn, Youjeong;Cho, Subin;Kang, Jonggu;Kim, Geunah;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.543-557
    • /
    • 2021
  • Because aerosols have different spectral characteristics according to the size and composition of the particle and to the satellite sensors, a comparative analysis of aerosol products from various satellite sensors is required. In South Korea, however, a comprehensive study for the comparison of various official satellite AOD (Aerosol Optical Depth) products for a long period is not easily found. In this paper, we aimed to assess the performance of the AOD products from MODIS (Moderate Resolution Imaging Spectroradiometer), VIIRS (Visible Infrared Imaging Radiometer Suite), Himawari-8, and Sentinel-3 by referring to the AERONET (Aerosol Robotic Network) sun photometer observations for the period between January 2015 and December 2019. Seasonal and geographical characteristics of the accuracy of satellite AOD were also analyzed. The MODIS products, which were accumulated for a long time and optimized by the new MAIAC (Multiangle Implementation of Atmospheric Correction) algorithm, showed the best accuracy (CC=0.836) and were followed by the products from VIIRS and Himawari-8. On the other hand, Sentinel-3 AOD did not appear to have a good quality because it was recently launched and not sufficiently optimized yet, according to ESA (European Space Agency). The AOD of MODIS, VIIRS, and Himawari-8 did not show a significant difference in accuracy according to season and to urban vs. non-urban regions, but the mixed pixel problem was partly found in a few coastal regions. Because AOD is an essential component for atmospheric correction, the result of this study can be a reference to the future work for the atmospheric correction for the Korean CAS (Compact Advanced Satellite) series.

An Analysis of Aerosol Direct Radiative Forcing Using Satellite Data in East Asia During 2001-2010 (위성자료를 이용한 2001-2010년 동안의 동아시아 지역 에어로졸 직접복사강제력 분석)

  • Jeong, Ji-Hyun;Kim, Hak-Sung;Kim, Joon-Tae;Park, Yong-Pil;Choi, Hyun-Jung
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.1053-1062
    • /
    • 2013
  • The shortwave aerosol direct radiative forcing (SWARF) was analyzed using the Clouds and Earth's Radiant Energy System (CERES) data in the East Asian region from 2001 to 2010. In the Yellow Sea and the Korean Peninsula, located in the leeward side of China, significantly negative high SWARF at the top of atmosphere (TOA) occurs due to the long-range transport of anthropogenic (e.g. sulphate) and natural aerosols (e.g. mineral dust) from the East Asian continent. Conversely, eastern China has much higher levels of SWARF at the surface (SFC) due to anthropogenically emitted aerosol than in the Yellow Sea and the Korean Peninsula. Since the radiative forcing of aerosols in the atmosphere are different in type, aerosol types were classified into sea salt+sulphate, smoke, sulphate and dust by using satellite data. The analysis on the SWARF by the classified aerosol types indicated that sulphate occupies a predominant portion of the atmosphere in the Yellow Sea and the Korean Peninsula in the summer. In particular, the annual averages of the summer TOA SWARF increased in the Yellow Sea and the Korean Peninsula from 2001 to 2010.

THE CROSSING APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO LANDSLIDE SUSCEPTIBILITY MAPPING AT KANGNEUNG, KOREA

  • LEE MOUNG-JIN;WON JOONG-SUN;LEE SARO
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.363-366
    • /
    • 2004
  • The purpose of this study is to reveal the spatial relationship between landslides and geospatial data set and to map the landslide susceptibility using this relationship, and the landslide occurrence data in Kangneung area in 2002. Landslide locations were identified from interpretation of satellite images. Landslide susceptibility was analyzed using an artificial neural network. The weights of each factor were determined by the back-propagation training method. Susceptibility maps were constructed from Geographic Information System (GIS), The cases were overlaid and cross overlaid for landslide susceptibility mapping in each study area in Kangneung.

  • PDF