Browse > Article
http://dx.doi.org/10.7780/kjrs.2021.37.3.14

A Comparison between Multiple Satellite AOD Products Using AERONET Sun Photometer Observations in South Korea: Case Study of MODIS,VIIRS, Himawari-8, and Sentinel-3  

Kim, Seoyeon (Department of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Jeong, Yemin (Department of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Youn, Youjeong (Department of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Cho, Subin (Department of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Kang, Jonggu (Department of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Kim, Geunah (Department of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Lee, Yangwon (Department of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Publication Information
Korean Journal of Remote Sensing / v.37, no.3, 2021 , pp. 543-557 More about this Journal
Abstract
Because aerosols have different spectral characteristics according to the size and composition of the particle and to the satellite sensors, a comparative analysis of aerosol products from various satellite sensors is required. In South Korea, however, a comprehensive study for the comparison of various official satellite AOD (Aerosol Optical Depth) products for a long period is not easily found. In this paper, we aimed to assess the performance of the AOD products from MODIS (Moderate Resolution Imaging Spectroradiometer), VIIRS (Visible Infrared Imaging Radiometer Suite), Himawari-8, and Sentinel-3 by referring to the AERONET (Aerosol Robotic Network) sun photometer observations for the period between January 2015 and December 2019. Seasonal and geographical characteristics of the accuracy of satellite AOD were also analyzed. The MODIS products, which were accumulated for a long time and optimized by the new MAIAC (Multiangle Implementation of Atmospheric Correction) algorithm, showed the best accuracy (CC=0.836) and were followed by the products from VIIRS and Himawari-8. On the other hand, Sentinel-3 AOD did not appear to have a good quality because it was recently launched and not sufficiently optimized yet, according to ESA (European Space Agency). The AOD of MODIS, VIIRS, and Himawari-8 did not show a significant difference in accuracy according to season and to urban vs. non-urban regions, but the mixed pixel problem was partly found in a few coastal regions. Because AOD is an essential component for atmospheric correction, the result of this study can be a reference to the future work for the atmospheric correction for the Korean CAS (Compact Advanced Satellite) series.
Keywords
AOD; AERONET; Atmospheric correction;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 ESA(European Space Agency), 2021. Sentinel-3 Synergy Land User Handbook, Available online: https://sentinel.esa.int/documents/247904/4598113/Sentinel-3-Synergy-Land-Handbook.pdf/1e0f98b7-eaf0-897a7183-7950b7df851f, Accessed on Jun. 18, 2021.
2 Holben, B.N., T. Eck, I. Slutsker, D. Tanre, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y.J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, 1998. AERONET-A federated instrument network and data archive for aerosol characterization, Remote Sensing of Environment, 66(1): 1-16.   DOI
3 Hsu, N.C., J. Lee, A.M. Sayer, W. Kim, C. Bettenhausen, and S.C. Tsay, 2019. VIIRS Deep Blue aerosol products over land: Extending the EOS long-term aerosol data records, Journal of Geophysical Research: Atmospheres, 124(7): 4026-4053.   DOI
4 Donlon, C., B. Berruti, A. Buongiorno, M.H. Ferreira, P. Femenias, J. Frerick, P. Goryl, U. Klein, H. Laur, C. Mavrocordatos, J. Nieke, H. Rebhan, B. Seitz, J. Stroede, and R. Sciarra, 2012. The global monitoring for environment and security (GMES) sentinel-3 mission, Remote Sensing of Environment, 120: 37-57.   DOI
5 Lyapustin, A., Y. Wang, I. Laszlo, R. Kahn, S. Korkin, L. Remer, R. Levy, and J.S. Reid, 2011. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm, Journal of Geophysical Research: Atmospheres, 116(D03211): 1-15
6 Lyapustin, A., J., Martonchik, Y. Wang, I. Laszlo, and S. Korkin, 2011. Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables, Journal of Geophysical Research: Atmospheres, 116(D03210): 1-9.
7 Lee, K.H., and Y.J. Kim, 2008. Sensitivity of COMS/GOCI measured top-of-atmosphere reflectances to atmospheric aerosol properties, Korean Journal of Remote Sensing, 24(6): 559-569 (in Korean with English abstract).   DOI
8 Kaufman, Y.J., D. Tanre, L.A. Remer, E.F. Vermote, A. Chu, and B.N. Holben, 1997. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer, Journal of Geophysical Research: Atmospheres, 102(D14): 17051-17067.   DOI
9 Martins, V.S., A. Lyapustin, L.A.S. de Carvalho, C.C.F. Barbosa, and E.M.L.D.M. Novo, 2017. Validation of high-resolution MAIAC aerosol product over South America, Journal of Geophysical Research: Atmospheres, 122(14): 7537-7559.   DOI
10 Lee, G.T., S.W. Ryu, T.Y. Lee, and M.S. Suh, 2020. Analysis of AOD Characteristics Retrieved from Himawari-8 Using Sun Photometer in South Korea, Korean Journal of Remote Sensing, 36(3): 425-439 (in Korean with English abstract).   DOI
11 Lyapustin, A., Y. Wang, S. Korkin, and D. Huang, 2018. MODIS collection 6 MAIAC algorithm, Atmospheric Measurement Techniques, 11(10): 5741-5765.   DOI
12 North, P. and A. Heckel, 2010. Sentinel-3 Optical Products and Algorithm Definition. SYN Algorithm Theoretical Basis Document, Available online: https://earth.esa.int/documents/247904/349589/SYN_L2-3_ATBD.pdf, Accessed on May. 13, 2021.
13 Kikuchi, M., H. Murakami, K. Suzuki, T.M. Nagao, and A. Higurashi, 2018. Improved hourly estimates of aerosol optical thickness using spatiotemporal variability derived from Himawari-8 geostationary satellite, IEEE Transactions on Geoscience and Remote Sensing, 56(6): 3442-3455.   DOI
14 Ramanathan, V.C.P.J., P.J. Crutzen, J.T. Kiehl, and D. Rosenfeld, 2001. Aerosols, climate, and the hydrological cycle, Science, 294(5549): 2119-2124.   DOI
15 Lee, K.H., 2018. Validation of COMS/MI Aerosol Optical Depth Products Using Aerosol Robotic Network (AERONET) Observations Over East Asia, Korean Journal of Remote Sensing, 34(3): 507-517 (in Korean with English abstract).   DOI
16 Choi, M., H. Lim, J. Kim, S. Lee, T.F. Eck, B.N. Holben, M.J. Garay, E.J. Hyer, P.E. Saide and H. Liu, 2019. Validation, comparison, and integration of GOCI, AHI, MODIS, MISR, and VIIRS aerosol optical depth over East Asia during the 2016 KORUS-AQ campaign, Atmospheric Measurement Techniques, 12(8): 4619-4641.   DOI
17 Popp, T., G.D. Leeuw, C. Bingen, C. Bruhl, V. Capelle, A. Chedin, L. Clarisse, O. Dubovik, R. Grainger, J. Griesfeller, A. Heckel, S. Kinne, L. Kluser, M. Kosmale, P. Kolmonen, L. Lelli, P. Litvinov, L. Mei, P. North, S. Pinnock, A. Povey, C. Robert, M. Schulz, L. Sogacheva, K. Stebel, D.S. Zweers, G. Thomas, L.G. Tilstra, S. Vandenbussche, P. Veefkind, M. Vountas, and Y. Xue, 2016. Development, production and evaluation of aerosol climate data records from European satellite observations (Aerosol_CCI), Remote Sensing, 8(5): 421.   DOI
18 Eck, T.F., B.N. Holben, J.S. Reid, Q. Dubovik, A. Smirnov, N.T. O'Neill, I. Slutsker, and S. Kinne, 1999. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, Journal of Geophysical Research: Atmospheres, 104(D24): 31333-31349.   DOI
19 Hsu, N.C., S.C. Tsay, M.D. King, and J.R. Herman, 2004. Aerosol properties over bright-reflecting source regions, IEEE Transactions on Geoscience and Remote Sensing, 42(3): 557-569.   DOI
20 Jiang, T., B. Chen, K.K.Y. Chan, and B. Xu, 2019. Himawari-8/AHI and MODIS aerosol optical depths in China: evaluation and comparison, Remote Sensing, 11(9): 1011.   DOI
21 Sayer, A.M., N.C. Hsu, C. Bettenhausen, and M.J. Jeong, 2013. Validation and uncertainty estimates for MODIS Collection 6 "Deep Blue" aerosol data, Journal of Geophysical Research: Atmospheres, 118(14): 7864-7872.
22 Sayer, A.M., N.C. Hsu, J. Lee, W.V. Kim, and S.T. Dutcher, 2019. Validation, stability, and consistency of MODIS Collection 6.1 and VIIRS Version 1 Deep Blue aerosol data over land, Journal of Geophysical Research: Atmospheres, 124(8): 4658-4688.   DOI
23 Wang, W., F. Mao, Z. Pan, L. Du, and W. Gong, 2017. Validation of VIIRS AOD through a Comparison with a Sun Photometer and MODIS AODs over Wuhan, Remote Sensing, 9(5): 403.   DOI
24 Wang, Y., Q. Yuan, H. Shen, L. Zheng, and L. Zhang, 2020. Investigating multiple aerosol optical depth products from MODIS and VIIRS over Asia: Evaluation, comparison, and merging, Atmospheric Environment, 230: 117548.   DOI
25 Zhao, C., Z. Liu, Q. Wang, J. Ban, N.X. Chen, and T. Li, 2019. High-resolution daily AOD estimated to full coverage using the random forest model approach in the Beijing-Tianjin-Hebei region, Atmospheric Environment, 203: 70-78.   DOI
26 Sayer, A.M., N.C. Hsu, C. Bettenhausen, M.J. Jeong, and G. Meister, 2015. Effect of MODIS Terra radiometric calibration improvements on Collection 6 Deep Blue aerosol products: Validation and Terra/Aqua consistency, Journal of Geophysical Research: Atmospheres, 120(23): 12-157.   DOI
27 Lau, K.M., M.K. Kim, and K.M. Kim, 2006. Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau, Climate Dynamics, 26(7-8): 855-864.   DOI
28 Prasad, A.K. and R.P. Singh, 2007. Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000-2005), Remote Sensing of Environment, 107(1-2): 109-119.   DOI
29 Myhre, G., F. Stordal, M. Johnsrud, D.J. Diner, I.V. Geogdzhayev, J.M. Haywood, B.N. Holben, T. Holzer-Popp, A. Ignatov, R.A. Kahn, Y.J. Kaufman, N. Loeb, J.V. Martonchik, M.I. Mishchenko, N.R. Nalli8, L.A. Remer, M. Schroedter-Homscheidt, D. Tanre, O. Torres, and M. Wang, 2005. Intercomparison of satellite retrieved aerosol optical depth over ocean during the period September 1997 to December 2000, Atmospheric Chemistry and Physics, 5(6): 1697-1719.   DOI
30 Huang, J., S. Kondragunta, I. Laszlo, H. Liu, L.A. Remer, H. Zhang, S. Superczynski, P. Ciren, B. N. Holben, and M. Petrenko, 2016. Validation and expected error estimation of Suomi-NPP VIIRS aerosol optical thickness and Angstrom exponent with AERONET, Journal of Geophysical Research: Atmospheres, 121(12): 7139-7160.   DOI
31 Diner, D.J., J.C. Beckert, T.H. Reilly, C.J. Bruegge, J.E. Conel, R.A. Kahn, J.V. Martonchik, T.P. Ackerman, R. Davies, S.A. W. Gerstl, H.R. Gordon, J.-P. Muller, R.B. Myneni, P.J. Sellers, B. Pinty, and M.M. Verstraete, 1998. Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview, IEEE Transactions on Geoscience and Remote Sensing, 36(4): 1072-1087.   DOI
32 Kinne, S., M. Schulz, C. Textor, S. Guibert, Y. Balkanski, S.E. Bauer, T. Berntsen, T.F. Berglen, Q. Boucher, M. Chin, W. Collins, F. Dentener, T. Diehl, R. Easter, J. Feichter, D. Fillmore, S. Ghan, P. Ginoux, S. Gong, A. Grini, J. Hendricks, M. Herzog, L. Horowitz, I. Isaksen, T. Iversen, A. Kirkevag, S. Kloster, D. Koch, J.E. Kristjansson, M. Krol, A. Lauer, J.F. Lamarque, G. Lesins, X. Liu, U. Lohmann, V. Montanaro, G. Myhre, J. Penner, G. Pitari, S. Reddy, O. Seland, P. Stier, T. Takemura, and X. Tie, 2006. An AeroCom initial assessment - optical properties in aerosol component modules of global models, Atmospheric Chemistry and Physics, 6(7): 1815-1834.   DOI
33 Lim, H., M. Choi, M. Kim, J. Kim, S. Go, and S. Lee, 2018, Intercomparing the aerosol optical depth using the geostationary satellite sensors (AHI, GOCI and MI) from Yonsei AErosol Retrieval (YAER) algorithm, Journal of the Korean Earth Science Society, 39(2): 119-130 (in Korean with English abstract).   DOI
34 Prather, K.A., 2009. Our current understanding of the impact of aerosols on climate change, ChemSus Chem: Chemistry & Sustainability Energy & Materials, 2(5): 377-379.
35 Bessho, K., K. Date, M. Hayashi, A. Ikeda, T. Imai, H. Inoue, Y. Kumagai, T. Miyakawa, H. Murata, T. Ohno, A. Okuyama, R. Oyama, Y. Sasaki, Y. Shimazu, K. Shimoji, Y. Sumaida, M. Suzuki, H. Taniguchi, H. Tsuchiyama, D. Uesawa, H. Yokota, and R. Yoshida, 2016. An Introduction to Himawari-8/9 - Japan's New-Generation Geostationary Meteorological Satellites, Journal of the Meteorological Society of Japan. Ser. II, 94(2): 151-183.   DOI