• Title/Summary/Keyword: earth science education

Search Result 2,155, Processing Time 0.031 seconds

Contents Analysis of Astronomy in Science Textbooks of Elementary School according to the Changes of the Curriculum (교육과정의 변천에 따른 초등학교 과학과 교과서의 천문에 관한 내용 분석)

  • Choi, Hyun-Dong;Kwon, Chi-Soon
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.4 no.1
    • /
    • pp.32-42
    • /
    • 2011
  • The purpose of this study is to provide meaningful basic materials for organizing a science curriculum in future by analyzing the status and changes of contents about astronomical phenomena in textbooks according to the changes of the science curriculum of elementary school. A main target of analysis is science textbooks of elementary school in curriculums from 1st to 7th. For the analysis, the analytic frame based on contents in astronomy textbooks of teachers colleges and colleges of education was used. The result of the analysis is as in the following. First, astronomy accounted for average about 7% of all pages of textbooks in all of science curriculums. The 1st educational curriculum had the most learning quantity of 10.40%, and the 6th curriculum had the least quantity of 4.39%. These results show that astronomy was not a small part and was considered important in each science curriculum of elementary school considering that earth science accounted for 17-26% of all pages in elementary school science curriculum. Second, the things that have been dealt with in common in all science curriculums from 1st to 7th of elementary school are the shape of the earth, the rotation and the revolution of the earth, the occurrence of the seasons, the apparent motion of the sun, the status and motion of the moon, the movement of a star, the brightness and distance of a star, constellations, the sun, planets and others. These contents are expected to be dealt with continuously as basic contents to organize astronomy regardless of the changes of curriculum. Third, in science curriculum of elementary school, astronomical phenomena based on life experiences regarding the earth, the moon and the sun are mainly dealt with in the first and the second grade. Contents requiring principles-understanding and research are dealt with in the fifth and sixth grade. These results show that elementary school science curriculum dealing with astronomy reflects the developmental stages of students and considers principle of learning possibility.

Pre-service Earth Science Teachers Understanding about Volcanoes (화산에 대한 예비 지구과학 교사들의 이해)

  • Kim, Hyoung-Bum;Jeong, Jin-Woo;Ryu, Chun-Ryol
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.871-880
    • /
    • 2011
  • The purpose of this research is to explore preservice earth science teachers' understanding of volcanic systems using a modified version of InVEST Volcanic Concept Survey (InVEST VCS, Parham et al., 2010). Results showed that participants' understanding of volcanic concepts was rather limited. Questions requiring only basic content knowledge (e.g., terminology associated with volcano) received high scoring responses, while questions requiring higher order thinking and deeper conceptual connections as the mechanics of volcanic eruption received low scoring responses. Specifically, the prediction of hazards and impacts on the environment appeared to be poorly understood. VCS results can be applied to improve the subject content knowledge as well as the pedagogical knowledge that instructors may use when they assess students' understanding of volcanism within a solid conceptual framework.

The Preconceptions about Shape, Color and Gravity of the Earth in the Third Grade Students (지구의 모양, 색깔, 중력에 대한 3학년 학생들의 선개념)

  • Kang, In-Suk;Jeong, Jin-Woo;Kim, Yun-Ji
    • Journal of Korean Elementary Science Education
    • /
    • v.27 no.1
    • /
    • pp.31-41
    • /
    • 2008
  • The purpose of this research is to investigate the preconceptions of the Earth for 3rd grade students in elementary school. For this study, We interviewed with 30 students and children responded the questions with drawing the pictures. Through the study, We could find as followings. First, they thought that the shape of Earth is sphere only except one who had double conceptions of sphere and flat. Second, the color of the earth seems to be blue because of sea, but mostly answered, it seems to be green more than brown because of continent. Third, the conceptions of the gravity showed us 43% which is the kinds of scientific conceptions for the Earth.

  • PDF

Differences in priorities of high school students' knowledge activated in laboratory and earth environmental contexts (고등학교 학생들의 문제해결에서 맥락에 따라 활성화되는 지식의 우선순위차이)

  • Lee, Myoeng-Jee
    • Journal of The Korean Association For Science Education
    • /
    • v.14 no.3
    • /
    • pp.304-311
    • /
    • 1994
  • Four science concepts were selected from high school science textbook to investigate the differences in priorities of students knowledge activated during solving earth science problems in laboratory and earth science environmental contexts. Two items, one for laboratory context and the other for earth environmental context, were developed for earth selected concept The subjects were constituted of 192 students in 11th grade and 196 in 12th grade in one senior high school. Students' responses were categorized using graph models and analyzed in terms of 'Common Activated Knowledge'(CAK). and 'Specific Activated Knowledge'(SAK) across students' cognitive frames, grades, and sex. As contextual differences of the problems increased, context effects in priorities of CAK were reported in favor of laboratory context, on the contrary those of SAK in favor of earth environmental context. Context effects were reported across cognitive frames, especially students with laboratory cognitive frames showed more significant context effects than others. Lower graders and girls showed relatively large context effects. The results of this study showed that science concepts learned in a laboratory context are not easily transferred to earth environmental context. Therefore, special instructional strategies should be developed to overcome the context effect s according to activated knowledges with high priorities in laboratory and earth environmental context.

  • PDF

Teachers' & Students' Concepts of the Measurement of the Size of the Earth

  • Chae, Donghyun;Han, Jejun
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.3
    • /
    • pp.639-649
    • /
    • 2013
  • The purpose of this study is to figure out how teachers conduct an experiment in measuring the size of the Earth and how students recognize it. For this study, an in-depth interview was conducted one week after the lesson on the experiment about measuring the size of the Earth. The participants were five secondary school teachers and five secondary school students. The in-depth interview was recorded and transcribed. The result of the interview was drawn through an inductive categorized analysis method. As a conclusion of this study, the teachers taught the students the lesson using alternate angles instead of using the altitude of the Sun. Their lessons were based on Eratosthene's story or some related illustrations suggested in the textbook and not based on an explanation of the principle. Also, students measured the Earth's size only by using alternate angles and didn't understand the meaning of the shadow in the experiment. The results of this study show that teachers need to reconstruct the textbook and understand the accurate experimental principle for the students to have a meaningful experience of the experiment on measuring the size of the Earth.

Temporal and Spatial Variations of the ML 5.8 Gyeongju Earthquake on September 12, 2016

  • Lee, Gyeong Su;Kyung, Jai Bok;Lee, Sang Jun
    • Journal of the Korean earth science society
    • /
    • v.39 no.4
    • /
    • pp.342-348
    • /
    • 2018
  • An earthquake of $M_L$ 5.8 hit the Gyeongju area on September 12, 2016. A sequence of foreshock-mainshock-aftershock of 588 events with equal to or greater than magnitude 1.5 occurred for six months in this area. Around ninety-nine percentage (98.8%) of the total energy was released intensively within a day, and about 80% of the total events took place within a month after the Gyeongju earthquake. The epicentral distribution of aftershocks of major events ($M_L$ 5.1, 5.8, 4.5, and 3.5) were elongated in the direction of $N30^{\circ}E$. They correlate well with the focal mechanism solution. These facts support the inference that the Gyeongju earthquakes occurred on a sub-parallel subsidiary fault of the Yangsan fault zone or on the linking damage zones between Deokcheon and Yangsan fault. During the last six years before the Gyeongju earthquake, there were few events within 10-km radius from the epicenter. This seismic gap area was filled with a sequence of the Gyeongju earthquakes. The b value for aftershock of the Gyeongju earthquakes is 1.09.

Inquiry into the Narratives of Graduate Students of Education who Have Completed Teaching Profession - With a Focus on Earth Science Education Major - (교직과정을 이수한 교육대학원생의 내러티브 탐색 - 지구과학교육 전공을 중심으로 -)

  • Yu Sang Yeon;Duk Ho Chung;Chul Min Lee
    • Journal of the Korean earth science society
    • /
    • v.44 no.1
    • /
    • pp.90-103
    • /
    • 2023
  • The purpose of this study is to examine the anxiety arising from the budgetary and mental problems of graduate school students. Three graduate students majoring in Earth science examined conflict situations by using a narrative inquiry technique. First, participants become psychologically unstable due to a lack of knowledge in the field of Earth science, lack of mentors, lack of information related to academic schedules, late start compared to others, financial difficulties, and discrimination in the scholarship system. Second, participants felt hope from the perception that their lives are valuable, that they can change students for the better, and that they are developing themselves. Third, with their hope, the study participants bore the previously mentioned inferior situation mentioned above. They are, however, torn between becoming secondary school teachers and attempting to reroute their career path due to certain circumstances. Based on the results of the examination, the following conclusions were drawn. First, there should be improvements from graduate school management based on collecting and scrutinizing the demands of students in the to fulfill their needs. Second, providing psychological counseling for students who have problems overcoming their anxieties. This study expects graduate schools to not only emphasize training of incumbent teachers, but also suggest ways that can satisfy students to make better learning environment for all its members.

Day / Night Cycle Spatial Representation of Elementary Students of Urban and Rural Area from an Earth- and a Space-based Perspective (도심 지역 및 도서 지역 초등학생들의 낮과 밤에 대한 지구 기반 관점과 우주 기반 관점의 공간표상)

  • Shin, Myeong-Kyeong;Kim, Jong-Young
    • Journal of Korean Elementary Science Education
    • /
    • v.37 no.3
    • /
    • pp.309-322
    • /
    • 2018
  • There is no doubt that science -and, therefore, science education- is central to the lives of all (NGSS, 2013). This manuscript focuses on ideas in astronomy that are at the foundation of elementary students' understanding of the discipline: the apparent motion of the sun explaining the day / night cycle on Earth. According to prior research demonstrating that neither children nor adults hold a scientific understanding of the big ideas of astronomy (NRC, 1996), understanding of concepts may base students' progress towards more advanced understanding in the domain of astronomy. We have analyzed the logic of the domain and synthesized prior research assessing children's spatial representation from an earth- and a space based perspective to develop a set of learning trajectories that describe how students' initial ideas about apparent celestial motion as they take school science can be build upon. In this study elementary students' representations were compared by their resident context including urban and rural. This study may present a first look at the use of a learning progression framework in analyzing the structure of astronomy education. We discuss how this work may eventually lead towards the development and empirical testing of how children learn to describe and explain apparent patterns of celestial motion.

Analysis of Scientific Models in the Earth Domain of the 10th Grade Science Textbooks (10학년 과학 교과서 지구 분야에 등장하는 과학적 모델 분석)

  • Oh, Phil-Seok;Jon, Won-Son;Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.28 no.4
    • /
    • pp.393-404
    • /
    • 2007
  • The purpose of this study was to identity scientific models included in the Earth domain of the $10^{th}$ grade science textbooks. Three earth science-related chapters in each of 11 trade books were analyzed. A framework was developed and used to classify a scientific model from three different perspectives: medium of representation, method of representation, and mobility of a model. Results showed that the science textbooks utilized domain-specific models in which the nature of sub-areas of earth science was embedded. That is, the unit of 'Change of the Earth' included many iconic models that represented the inaccessible inner structure of the earth and the movement of the tectonic plates. These were also two-dimensional pictorial and static models. In the chapter of 'Atmosphere and Oceans', symbolic and diagrammatic models were dominant in use, which included weather maps and contour line graphs of sea surface temperature and salinity. The unit of 'Solar System and Galaxies' showed the highly frequent use of iconic and analogical models for the large-scale celestial objects and their movements. Implications for earth science education and relevant research were discussed.

An Analysis of Sequence of Earth Science Content in Elementary School Curriculum in Korea and the U. S. (한국과 미국의 초등 과학 교육과정 지구영역의 학년 간 내용 연계성 분석 연구)

  • Suh, Ye-Won
    • Journal of Korean Elementary Science Education
    • /
    • v.27 no.4
    • /
    • pp.356-370
    • /
    • 2008
  • The study aims to explore sequence of earth science content in elementary school science curriculum in Korea and the U.S.. The analysis is focused on a) general content structure of earth science part; b) concept relationship between grades in the specific field of 'geology'; c) longitudinal connection of concepts and content in 'geology.' The findings are as follows. First, earth science curriculum content in Korea is structured according to sub-scientific disciplines centering on not science concepts but topics or inquiry activities whereas the U.S. curricular content is organized through integrative earth science topics with basic concepts and sub-concepts. Second, it is a common feature that basic concepts are interrelated to sub-concepts in all grades in both countries. However, basic concepts are scattered all over the grades, presented in a linear pattern in Korea while those are provided together in 3rd grade and repeated with extended concepts in a spiral structure in the U.S.. Last, it is not clear how concepts and content are longitudinally connected between grades in Korean curriculum. On the contrary, concepts and content in the U.S. curriculum have a strong longitudinal connection between grades with conceptual hierarchy. Such results indicate that Korean elementary school science curriculum would limit students' comprehensive understanding of science concepts through grades. The study suggests Korean science content should strengthen interrelationship among concepts as well as longitudinal connection between grades, in order to achieve the ultimate goal of science education, 'scientific literacy'.

  • PDF