DOI QR코드

DOI QR Code

Analysis of Scientific Models in the Earth Domain of the 10th Grade Science Textbooks

10학년 과학 교과서 지구 분야에 등장하는 과학적 모델 분석

  • Oh, Phil-Seok (Department of Science Education, Ewha Womans University) ;
  • Jon, Won-Son (Department of Science Education, Ewha Womans University) ;
  • Yoo, Jung-Moon (Department of Science Education, Ewha Womans University)
  • 오필석 (이화여자대학교 과학교육과) ;
  • 전원선 (이화여자대학교 과학교육과) ;
  • 유정문 (이화여자대학교 과학교육과)
  • Published : 2007.08.31

Abstract

The purpose of this study was to identity scientific models included in the Earth domain of the $10^{th}$ grade science textbooks. Three earth science-related chapters in each of 11 trade books were analyzed. A framework was developed and used to classify a scientific model from three different perspectives: medium of representation, method of representation, and mobility of a model. Results showed that the science textbooks utilized domain-specific models in which the nature of sub-areas of earth science was embedded. That is, the unit of 'Change of the Earth' included many iconic models that represented the inaccessible inner structure of the earth and the movement of the tectonic plates. These were also two-dimensional pictorial and static models. In the chapter of 'Atmosphere and Oceans', symbolic and diagrammatic models were dominant in use, which included weather maps and contour line graphs of sea surface temperature and salinity. The unit of 'Solar System and Galaxies' showed the highly frequent use of iconic and analogical models for the large-scale celestial objects and their movements. Implications for earth science education and relevant research were discussed.

본 연구의 목적은 우리나라 10학년 과학 교과서 지구 분야에 등장하는 과학적 모델을 분류해 보는 것이었다. 과학적 모델을 표상 매체, 표상 방법, 모델의 가동성이라는 세 가지 차원에서 검토할 수 있도록 개발된 분류틀을 이용하여 11종 교과서의 지구과학 관련 단원을 분석하였다. 연구의 결과, 과학 교과서들은 지구과학의 세부 영역의 본성이 반영된 영역-특이적인 모델들을 수록하고 있는 것을 알 수 있었다. 즉, '지구의 변동' 단원은 접근이 용이하지 않은 지구의 내부 구조나 판들의 운동을 표상하는 모상 모델을 많이 포함하고 있었는데, 이들은 대부분 평면적 그림 모델과 정적 모델에 속하였다. '대기와 해양' 단원에서는 일기도나 해수의 온도와 염분을 나타낸 등치선도 등을 포함한 기호모델과 도해적 모델이 많이 등장하였다. '태양계와 은하' 단원에서는 규모가 큰 천체나 그들의 운동을 표상하는 모상 모델이나 유비 모델의 비율이 상대적으로 높게 나타났다. 이러한 분석 결과가 지구과학 교육과 관련 연구에 시사하는 바를 논의하였다.

Keywords

References

  1. 교육부, 1998, 과학과 교육과정 . 대한교과서, 서울, 101 p
  2. 교육부, 2001, 고등학교 교육과정 해설: 6 과학. 대한교과서, 서울, 244 p
  3. 오필석, 2006, 지구과학교육에서 활용되는 과학적 모델의 분류틀 개발. 한국지구과학회 2006년도 춘계학술발표회 논문집, 92
  4. 이진봉, 2006, 지구과학 그래프의 유형과 고등학생의 그래프 해석 능력 분석. 서울대학교 대학원 석사 학위 논문, 90 p
  5. Baker, V.R., 1999, Geosemiosis. GSA Bulletin, 5, 633-645
  6. Boulter, C.J. and Buckley, B.C., 2000, Constructing a typology of models for science education. In Gilbert, J.K. and Boulter, C.J. (eds.), Developing models in science education. Kluwer Academic Publishers, Dordrecht, The Netherlands, 41-57
  7. Clement, J., 2000, Model based learning as a key research area for science education. International Journal of Science Education, 22 (9), 1041-1053 https://doi.org/10.1080/095006900416901
  8. Engelhardt, W. von, and Zimmermann, J., 1982, Theory of earth science (translated by L. Fischer). Cambridge University Press, Cambridge, UK, 381 p
  9. Erduran, S. and Duschl, RA, 2004, Interdisciplinary characterizations of models and the nature of chemical knowledge in the classroom. Studies in Science Education, 40, 105-138 https://doi.org/10.1080/03057260408560204
  10. Frigg, R. and Hartmann, S., Scientific models. In Sarkar, S. et al. (eds.), The Philosophy of science: An encyclopedia. Routledge, New York, USA, in press
  11. Giere, R.N., 1988, Explaining science: A cognitive approach. University of Chicago Press, Chicago, IL, USA, 321 p
  12. Giere, R.N., 1999, Science without laws. University of Chicago Press, Chicago, IL, USA, 285 p
  13. Gilbert, J.K., 2004, Models and modelling: Routes to more authentic science education. International Journal of Science and Mathematics Education, 2, 115-130 https://doi.org/10.1007/s10763-004-3186-4
  14. Gilbert, J.K. (ed.), 2005, Visualization in science education. Springer, Dordrecht, The Netherlands, 346 p
  15. Gilbert, J.K. and Boulter, C.J. (eds.), 2000, Developing models in science education. Kluwer Academic Publishers, Dordrecht, The Netherlands, 387 p
  16. Gilbert, S.W. and Ireton, S.W., 2003, Understanding models in earth and space science. NATA Press, Arlington, VA, USA, 124 p
  17. Gobert, JD., 2005, The effects of different learning tasks on model-building in plate tectonics: Diagramming versus explaining. Journal of Geoscience Education, 53 (4), 444-455 https://doi.org/10.5408/1089-9995-53.4.444
  18. Gobert, JD. and Clement, J.J., 1999, Effect of student-generated diagram versus student-generated summaries on conceptual understanding of causal and dynamic knowledge in plate tectonics. Journal of Research in Science Teaching, 26 (1), 39-53
  19. Halloun, I.A., 2004, Modeling theory in science education. Kluwer Academic Publishers, Dordrecht, The Netherlands, 252 p
  20. Harre, R., 1970, The principles of scientific thinking. University of Chicago Press, Chicago, IL, USA, 324 p
  21. Harre, R., 1985, The philosophies of science (2nd ed.). Oxford University Press, Oxford, UK, 203 p
  22. Harrison, A.G and Treagust, D.P., 2000, A typology of school science models. International Journal Science Education, 22 (9), 1011-1026 https://doi.org/10.1080/095006900416884
  23. Johnson, JK. and Reynolds, S.J., 2005, Concept sketches? Using student- and instructor-generated, annotated sketches for learning, teaching, and assessment in geology courses. Journal of Geoscience Education, 53 (1), 85-95 https://doi.org/10.5408/1089-9995-53.1.85
  24. Kress, G, Jewitt, C., Ogborn, J, and Tsatsarelis, C., 2001, Multimodal teaching and learning: The rhetorics of the science classroom. Continuum, London, UK, 188 p
  25. Kress, G, Ogborn, J, and Martins, I., 1998, A satellite view of language: Some lessons from science classrooms. Language Awareness, 7 (2,3), 69-89 https://doi.org/10.1080/09658419808667102
  26. Lemke, J., 1998, Multiplying meaning: Visual and verbal semiotics in scientific text. In Martin, J.R. and Veel, R. (eds.), Reading science: Critical and functional perspectives on discourse of science. Routledge, New York, USA, 87-113
  27. Magnani, L., Nersessian, N.J., and Thagard, P., 1999, Model-based reasoning in scientific discovery. Kluwer Acadernic/Plenum Publishers, New York, USA, 343 p
  28. Raia, F., 2005, Students' understanding of complex dynamic systems. Journal of Geoscience Education, 53 (3), 297-308 https://doi.org/10.5408/1089-9995-53.3.297
  29. Reynolds, S.J., Johnson, J.K., Piburn, MD., Leedy, D.E., Coyan, J.A., and Busch, M.M., 2005, Visualization in undergraduate geology courses. In Gilbert, J.K. (ed.), Visualization in science education. Springer, Dordrecht, The Netherlands, 253-266
  30. Rowley-Jolivet, E., 2004, Different visions, different visuals: A social semiotic analysis of field-specific visual composition in scientific conference presentations. Visuals Communication, 3 (2), 145-175 https://doi.org/10.1177/147035704043038
  31. Shin, M.-K., Kim, H.-S., and Kim, J.-H., 2006, A study on pre-service teachers' perception of leaming environment in earth science with using virtual reality (VR): An exploratory case. Journal of the Korean Earth Science Society, 27 (3), 269-278
  32. Steer, D.N., Knight, C.C., Owens, K.D., and McConnell, D.A., 2005, Challenging students ideas about Earth's interior structure using a model-based, conceptual change approach in a large class setting. Journal of Geoscience Education, 53 (4), 415-421 https://doi.org/10.5408/1089-9995-53.4.415

Cited by

  1. Exploration of Discursive-Epistemic Mechanisms in High School Earth Science Lessons vol.36, pp.4, 2015, https://doi.org/10.5467/JKESS.2015.36.4.390
  2. The Effects of Cogenerative Dialogues on Scientific Model Understanding and Modeling of Middle School Students vol.37, pp.4, 2016, https://doi.org/10.5467/JKESS.2016.37.4.243