• 제목/요약/키워드: earth magnetic field

검색결과 362건 처리시간 0.029초

Global MHD Simulation of the Earth's Magnetosphere Event on October, 1999

  • PARK KYUNG SUN;OGINO TATSUKI
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.317-319
    • /
    • 2001
  • The response of the earth's magnetosphere to the variation of the solar wind parameters and Interplanetary magnetic field (IMF) has been stud}ed by using a high-resolution, three-dimension magnetohydrodynamic (MHD) simulation when the WIND data of velocity Vx, plasma density, dynamic pressure, By and Bz every 1 minute were used as input. Large electrojet and magnetic storm which occurred on October 21 and 22 are reproduced in the simulation (fig. 1). We have studied the energy transfer and tail reconnect ion in association with geomagnetic storms.

  • PDF

지구자기 모델을 이용한 편차 추정에 관한 연구 (A Study on the Earth's Variation Prediction Using Geomagnetic Model)

  • 람파드하사하;임정빈
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2006년도 추계학술발표회
    • /
    • pp.131-135
    • /
    • 2006
  • 이 연구의 목적은 지구 내부의 동적 코어에서 공간과 시간에 따라서 발생하는 지구 자기장 구조와 그에 따른 경년 자차변화를 모델링하고 연구하는 것이다. 지구의 주 자장과 경년 자차변화에 대한 구형 조화 모델은, 외부 간섭자장이나 내부의 불균일 등이 없다는 가정 하에 안정되고 왜곡되지 않은 지구상 어떠한 위치에서의 지구자장의 구조와 세기를 나타낼 수 있다. 이 연구에서는 선박용 디지털 컴퍼스를 이러한 지구자장 에 적용하는 경우를 고려해 지구의 원 조화 모텔에 대한 실제 적용방법과 절차를 기술하였다.

  • PDF

선박용 디지털 컴퍼스에 적용하기 위한 지구편차 모형 개발 (A Study on the Earth's Variation Model to Adopt Ship's Digital Compass)

  • 람파드하사하;임정빈
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 춘계학술대회 및 창립 30주년 심포지엄(논문집)
    • /
    • pp.87-90
    • /
    • 2006
  • 지구자장의 주자장과 경년변화에 대한 원통형 지구 조화 모델은, 지구가 지엽적으로 불균형 또는 외부 소스가 없는 정상상태라고 가정하는 경우, 어느 지역의 지구자장 구조와 자장의 세기를 나타낼 수 있다. 이 연구에서는 기초 연구로서 선박용 디지털 컴퍼스를 실제 지구자장에 적용하는 경우의 원통형 조화 모델에 대한 관련 방법과 절차 등을 조사하였다.

  • PDF

Collisionless Magnetic Reconnection and Dynamo Processes in a Spatially Rotating Magnetic Field

  • Lee, Junggi;Choe, G.S.;Song, Inhyeok
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.45.1-45.1
    • /
    • 2016
  • Spatially rotating magnetic fields have been observed in the solar wind and in the Earth's magnetopause as well as in reversed field pinch (RFP) devices. Such field configurations have a similarity with extended current layers having a spatially varying plasma pressure instead of the spatially varying guide field. It is thus expected that magnetic reconnection may take place in a rotating magnetic field no less than in an extended current layer. We have investigated the spontaneous evolution of a collisionless plasma system embedding a rotating magnetic field with a two-and-a-half-dimensional electromagnetic particle-in-cell (PIC) simulation. In magnetohydrodynamics, magnetic flux can be decreased by diffusion in O-lines. In kinetic physics, however, an asymmetry of the velocity distribution function can generate new magnetic flux near O- and X-lines, hence a dynamo effect. We have found that a magnetic-flux-reducing diffusion phase and a magnetic-flux-increasing dynamo phase are alternating with a certain period. The temperature of the system also varies with the same period, showing a similarity to sawtooth oscillations in tokamaks. We have shown that a modified theory of sawtooth oscillations can explain the periodic behavior observed in the simulation. A strong guide field distorts the current layer as was observed in laboratory experiments. This distortion is smoothed out as magnetic islands fade away by the O-line diffusion, but is soon strengthened by the growth of magnetic islands. These processes are all repeating with a fixed period. Our results suggest that a rotating magnetic field configuration continuously undergoes deformation and relaxation in a short time-scale although it might look rather steady in a long-term view.

  • PDF

A New Type of MR Sensor-Based Vehicle Detector with High Performance and Reliability

  • Kang, Moon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1689-1693
    • /
    • 2004
  • This paper proposes a vehicle detector with a magnetoresistive (MR) sensor. The detector consists of a MR sensor and mechanical and electronic apparatuses. Composed of six magnetically variable resistors, the MR sensor senses disturbance of the earth's magnetic field caused by a moving vehicle over itself and then produces an output indicative of the moving vehicle. Experiments have been carried out with three stages. At the first stage, the outputs of the sensor have been analyzed to show the validity of the detector's circuit and the detecting method. At the second stage, the detector has been tested on a local highway in Korea. Through the field tests, the outputs of the detector in response to various kinds of moving vehicles have been collected and analyzed. At the final stage, to verify the performance of the detector, traffic volumes on the highway have been measured with the detector and compared with the exact traffic volumes in a highly congested traffic.

  • PDF

AMR 센서를 이용한 차량 속도 검지기 (A Vehicle Speed Detector Using AMR Sensors)

  • 강문호;박윤창
    • 전기학회논문지
    • /
    • 제58권7호
    • /
    • pp.1398-1404
    • /
    • 2009
  • This paper proposes a vehicle speed detector with anisotropic magnetoresistive (AMR) sensors and addresses experimental results to show the performance of the detector. The detector consists of two AMR sensors and mechanical and electronic apparatuses. The AMR sensor senses disturbance of the earth magnetic field caused by a vehicle moving over the sensor and then produces an output indicative of the moving vehicle. In this paper, vehicle speeds are calculated by using two AMR sensors built on a board. The speed of a vehicle is calculated by dividing the known distance between the two sensors with the time difference between two output signals from each sensor, captured sequentially while the vehicle is driving over the sensors. Some field tests have been carried to show the performance of the proposed detector and its usefulness.

Global MHD Simulation of a Prolonged Steady Weak Southward Interplanetary Magnetic Field Condition

  • Park, Kyung Sun;Lee, Dae-Young;Kim, Khan-Hyuk
    • Journal of Astronomy and Space Sciences
    • /
    • 제37권2호
    • /
    • pp.77-84
    • /
    • 2020
  • We performed high-resolution three-dimensional global magnetohydrodynamic (MHD) simulations to study the interaction between the Earth's magnetosphere and a prolonged steady southward interplanetary magnetic field (IMF) (Bz = -2nT) and slow solar wind. The simulation results show that dayside magnetic reconnection continuously occurs at the subsolar region where the magnetosheath magnetic field is antiparallel to the geomagnetic field. The plasmoid developed on closed plasma sheet field lines. We found that the vortex was generated at the magnetic equator such as (X, Y) = (7.6, 8.9) RE due to the viscous-like interaction, which was strengthened by dayside reconnection. The magnetic field and plasma properties clearly showed quasiperiodic variations with a period of 8-10 min across the vortex. Additionally, double twin parallel vorticity in the polar region was clearly seen. The peak value of the cross-polar cap potential fluctuated between 17 and 20 kV during the tail reconnection.

Magnetic Field Strength in the Upper Solar Corona Using White-light Shock Structures Surrounding Coronal Mass Ejections

  • 김록순;;문용재;조경석
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.114.1-114.1
    • /
    • 2012
  • To measure the magnetic field strength in the solar corona, we examined 10 fast (>1000 km/s) limb coronal mass ejections (CMEs) that show clear shock structures in Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph images. By applying the piston-shock relationship to the observed CME's standoff distance and electron density compression ratio, we estimated the Mach number, Alfven speed, and magnetic field strength in the height range 3-15 solar radii (Rs). The main results from this study are as follows: (1) the standoff distance observed in the solar corona is consistent with those from a magnetohydrodynamic model and near-Earth observations; (2) the Mach number as a shock strength is in the range 1.49-3.43 from the standoff distance ratio, but when we use the density compression ratio, the Mach number is in the range 1.47-1.90, implying that the measured density compression ratio is likely to be underestimated owing to observational limits; (3) the Alfven speed ranges from 259 to 982 km/s and the magnetic field strength is in the range 6-105 mG when the standoff distance is used; (4) if we multiply the density compression ratio by a factor of two, the Alfven speeds and the magnetic field strengths are consistent in both methods; and (5) the magnetic field strengths derived from the shock parameters are similar to those of empirical models and previous estimates.

  • PDF

Content and Distribution of Transition Metals and Rare Earth Elements in Magnetically and Mechanically Separated Brown Coal Ash

  • Malikov, Sh.R.;Pikul, V.P.;Mukhamedshina, N.M.;Sandalov, V.N.;Kudiratov, S.;Ibragimova, E.M.
    • Journal of Magnetics
    • /
    • 제18권3호
    • /
    • pp.365-369
    • /
    • 2013
  • Coal ash is known to contain a noticeable amount of valuable elements, including transition metals and lanthanides. Therefore it is quite actual problem to extract them for metallurgy and other applications. This paper presents the results of high gradient magnetic and mechanical separation, microscopy, element analyses and optical spectroscopy of brown coal ash taken from the combustion camera and chimney-stalk of Angren thermal power station. The separated magnetic fraction was 3.4 wt.%, where the content of Fe in ferrospheres increased to 58 wt.%. The highest contents of Fe and rare earth elements were found in the fine fractions of $50-100{\mu}m$. Optical absorption spectroscopy of water solutions of the magnetic fractions revealed $Fe^{2+}$ and $Fe^{3+}$ ions in the ratio of ~1:1. The separated coal ash could be used for cleaning of technological liquid waste by means of the high gradient magnetic field.

지자기 센서의 온라인 왜곡 보정기법 (On-line Magnetic Distortion Calibration Method for a Magnetometer)

  • 김태연;소창주;유준
    • 제어로봇시스템학회논문지
    • /
    • 제18권9호
    • /
    • pp.819-822
    • /
    • 2012
  • This paper describes an on-line magnetic distortion calibration procedure for a magnetometer. The horizontal magnetic field is calculated through the earth magnetic field sensed by 3-axes magnetometer. The ellipse equation is derived from a set of horizontal magnetic field data using least square method and calibration parameters are determined. The calibration process is performed iteratively until parameters are not renewed, and experimental results show the effectiveness of the devised method.