• Title/Summary/Keyword: early-age strength

Search Result 506, Processing Time 0.024 seconds

Study on the Engineering Properties of 150MPa Ultra-high Strength Concrete

  • Jung, Sang-Jin;Yoshihiro, Masuda;Kim, Woo-Jae;Lee, Young-Ran;Kim, Seong-Deok;Ha, Jung-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.113-122
    • /
    • 2010
  • In this study, 150MPa ultra-high-strength concrete was manufactured, and its performance was reviewed. As technically meaningful autogenous shrinkage reportedly occurs at a W/B ratio of 40% or less, although it occurs in all concrete regardless of the W/B ratio, the effects of the use of expansive admixture and shrinkage reducer, or of the friction and restraint of forms that may result in the effective reduction of autogenous shrinkage, were reviewed. As a result, considering the flow and strength characteristics, it was found that the slump flow time was shorter with expansive admixture, and shortest with shrinkage reducer. All specimens with $30kg/m^3$ expansive admixture showed high strength at early material age. Their strength decreased due to the expansion cracks when there was excessive use of expansive admixture, and the use of shrinkage reducer did not influence the change in the strength according to the material age. The expansive admixture had a shrinkage reduction effect of 80%, while the shrinkage reducer had a shrinkage reduction effect of 30%, indicating that the expansive admixture had a stronger effect. It seems that mixing the two will have a synergistic effect. The shrinkage reduction rate was highest when the W/B ratio was 20%. The form suppressed the expansion and shrinkage at the early period, and the demolding time did not significantly influence the shrinkage. The results of the study showed that the excessive addition of expansive admixture leads to expansion cracks, and the expansive admixture and shrinkage reducer have the highest shrinkage reduction effect when they are mixed.

Characteristics of Strength and Fracture Toughness of Recycled Aggregate Concrete (재생골재 콘크리트의 강도 및 파괴특성 실험)

  • Kim, Jin-Cheol;Yang, Sung-Chul;Cho, Yoon-Ho;Kim, Nam-Ho
    • International Journal of Highway Engineering
    • /
    • v.6 no.1 s.19
    • /
    • pp.37-45
    • /
    • 2004
  • The characteristics of concrete strength and fracture parameters of recycled aggregate concrete were investigated to apply to the concrete pavements. As the results, the early strength of recycled aggregate concrete showed to be lower than that of natural coarse aggregate concrete, whereas strength at 28 days showed to be similar. Young's modulus of recycled aggregate concrete was lower than that of natural coarse aggregate concrete due to the difference of aggregate strength. And recycled aggregate concrete contained with ground granulated blast furnace slag seemed to have an effect of strength increasing. The critical stress intensity factor of recycled aggregate concrete at the early age was increased, and converged to be similar, compared to natural aggregate concrete at later age. The reliability of two-parameter fracture model was identified by the good correlation between the theoretical value computed by P-CMOD relationship and experimental results for Young's modulus and tensile strength.

  • PDF

Autogenous shrinkage of ultra high performance concrete considering early age coefficient of thermal expansion

  • Park, Jung-Jun;Yoo, Doo-Yeol;Kim, Sung-Wook;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.763-773
    • /
    • 2014
  • The recently developed Ultra High Performance Concrete (UHPC) displays outstanding compressive strength and ductility but is also subjected to very large autogenous shrinkage. In addition, the use of forms and reinforcement to confine this autogenous shrinkage increases the risk of shrinkage cracking. Accordingly, this study adopts a combination of shrinkage reducing admixture and expansive admixture as a solution to reduce the shrinkage of UHPC and estimates its appropriateness by evaluating the compressive and flexural strengths as well as the autogenous shrinkage according to the age. Moreover, the coefficient of thermal expansion known to experience sudden variations at early age is measured in order to evaluate exactly the autogenous shrinkage and the thermal expansion is compensated considering these measurements. The experimental results show that the compressive and flexural strengths decreased slightly at early age when mixing 7.5% of expansive admixture and 1% of shrinkage reducing admixture but that this decrease becomes insignificant after 7 days. The use of expansive admixture tended to premature the setting of UHPC and the start of sudden increase of autogenous shrinkage. Finally, the combined use of shrinkage reducing admixture and expansive admixture appeared to reduce effectively the autogenous shrinkage by about 47% at 15 days.

A Quantitative Analysis on Feature of Hydrate Affecting Early-Age Strength (콘크리트 초기강도에 영향을 미치는 수화물의 정량분석에 관한 연구)

  • Song Tae Hyeob;Lee Mun Hwan;Lee Sea Hyun;Park Dong Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.583-586
    • /
    • 2005
  • Strength of concrete is very important factor in design and quality management and may represent overall quality of concrete. Such strength of concrete may differ depending on amount of cement mixed, water and fine aggregate ratio. Classic concrete products have been produced mainly with ordinary portland cement(hereinafter 'cement'), water and fine aggregate as shown above, but various additives and mixture materials have been used for concrete manufacturing, along with development of high functional concrete and diversification of structures. Various kinds of chemical mixtures agents and mixture materials have been used as it requires concretes with other features which cannot be solved with existing materials only, such as high strength, high flexibility and no-separation in the water. Such addition of various mixture agents may cause change in cement hydrate, affecting strength. Hydration of cement is the process of producing potassium hydroxide, C-S-H, C-A-H and Ettringite, while causing heat generation reaction after it is mixed with water, and generation amounts of such hydrates play lots of roles in condensation and hardening. This study aims to analyze its strength and features with hydrates by making specimen according to curing temperature, types of mixture agent, mixing ratio and ages and by analyzing such hydrates in order to analyze role of cement hydrate on early strength of concrete.

  • PDF

An Experimental Study on the Rebound Degree Tendency of Linear Hitting Test Hammer (선 타격 반발도 시험기의 반발도 경향에 관한 실험적 연구)

  • Ahn Hyo-Soo;Seo Chee-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.313-322
    • /
    • 2005
  • Recently, as the remodeling market gradually substitute for new construction market and safety diagnosis for reconstruction apartment become a matter of principal Interest, it is demanded that scientific diagnosis and evaluation for existing concrete structure state. And it is increasing that the significance for reliability of data which is used for estimating the concrete compressive strength by nondestructive test. As a result, it is found that different proposal to material age and hitting angle is good to improving the reliability of presumption of concrete compressive strength in the linear hitting rebound test hammer. And for the reason that mutual relation between the compressive strength and rebound degree is highest in linear hitting rebound test hammer 25mm in all portion according to early md middle material age and hitting angle except the early material age $-45^{\circ}$, analysis showed that linear hitting rebound test hammer is more reliable than existing schmidt hammer in presumption of concrete compressive strength.

Diagnosis of Crack Occurrence of Very-Early Strength Latex-Modified Concretes through Field Tests (현장실험을 통한 VES-LMC 균열발생 원인분석)

  • Choi, Pan-Gil;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.139-146
    • /
    • 2006
  • Many concrete bridge decks develop transverse cracking shortly after construction. These cracks accelerate corrosion of reinforcing steel and lead to concrete deterioration, damage to components beneath the deck, unsightly appearance. These cracks shorten the service life and increase maintenance costs of bridge structures. In this study, VES-LMC overlay, which provides the same benefits as a conventional overlay, is designed to cure very quickly. Although the materials for VES overlays are more expensive, the cost is more than offset by the savings on traffic control and work zone safety measures. Otherwise, reaction of hydration occurs very rapidly in beginning step(concrete placing). As a results, thermal cracking can be occur by thermal stress in accordance with hydration-heat The purpose of this study was to estimate diagnosis of crack occurrence of VES-LMC through field tests at early-age.

  • PDF

Basic Creep Model by Considering Autogenous Shrinkage

  • Lee, Yun;Kim, Jin-Keun;Kim, Min-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1071-1076
    • /
    • 2003
  • Basic creep of concrete during very early ages is an important factor on the behavior of young concrete and a great deal of research has been executed. However, in recent studies, it was revealed that the basic creep measured by sealed concrete was inaccurate, especially for high strength concrete because of autogenous shrinkage at early age. This paper presents the results from experimental study that investigate to explore the effect of autogenous shrinkage in basic creep. More specifically, four different mix proportions were casted and the primary variables were water-cement ratios. Through this research, it was found that the differences between apparent specific creep and real specific creep were remarkable in low water-cement ratio at early age. Therefore, it is recommended to modify existing creep model by considering autogenous shrinkage

  • PDF

The Study of experiment on preventing frost damage at early age of mortar in low temperature using Reduction slag. (환원슬래그를 사용한 콘크리트의 내구성 평가에 관한 연구)

  • Min, Tae-Beom;Choi, Hyun-Kuk;Mun, Young-Bum;Kim, Hyeong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.150-151
    • /
    • 2016
  • In previous study, researchers studied development of early anti-freezing cement at low temperature (-5℃) using hydration characteristics of reduction slag. In this study, the durability of concrete using reduction slag was conducted. The experiment result, reduction slag makes high temperature and improves compressive strength due to quick setting. And then result of durability show that it is no problem. However, it is considered that further study is needed about high shrinkages which was indicated in dry shrinkage.

  • PDF

Permeability Property of Latex Modified Concrete with Cement Types (시멘트 종류별 라텍스 개질 콘크리트의 투수특성)

  • 위진우;정원경;홍창우;김동호;최삼룡;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1023-1028
    • /
    • 2001
  • This study focused on the investigation of strength development and permeability of LMC(latex modified concrete) and RSLMC(rapid-setting cement latex modified concrete) as the latex content, cement types and w/c ratio variated. The compressive strength of latex modified concrete decreased slightly and the flexural strength increased quitely at the latex content of 15%. This may due to the flexibility of latex filled in voids and interconnections of hydrated cement and aggregates by a film of latex particles, respectively. The permeability test results showed that the permeability of LMC was considerably lower than that of conventional concrete. In the RSLMC's tests of permeability to chloride ion indicated very low permeability at an early age, which nay be due to the early formation of needle-shape ettringites and latex film.

  • PDF

Engineering properties of low heat concrete depending On low heat binder and the change in W/B (저발열 결합재 및 W/B 변화에 따른 저열콘크리트의 공학적 특성)

  • Kwak, Yong-Jin;Son, Ho-Jung;Kim, Kyoung-Min;Park, Sang-Jun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.69-70
    • /
    • 2012
  • This paper is to investigate the engineering properties of the concrete incorporating different types of low heat generating binders subjected to various W/B. As expected, it is found that increase of W/B resulted in a decrease of hydration heat and compressive strength. It also showed that the application of high early strength and low carbon type mixture had favorable strength development at early and later age, while hydration heat showed rather higher than existing low heat mixture.

  • PDF