• 제목/요약/키워드: early-age mechanical properties

검색결과 65건 처리시간 0.025초

The effect of combined carbonation and steam curing on the microstructural evolution and mechanical properties of Portland cement concrete

  • Kim, Seonhyeok;Amr, Issam T.;Fadhel, Bandar A.;Bamagain, Rami A.;Hunaidy, Ali S.;Park, Solmoi;Seo, Joonho;Lee, H.K.
    • Advances in concrete construction
    • /
    • 제11권5호
    • /
    • pp.367-374
    • /
    • 2021
  • The present study investigated the effect of the combined carbonation and steam curing on the physicochemical properties and CO2 uptake of the Portland cement concrete. Four different curing regimes were adopted during the initial 10 h of curing to evaluate the potential of carbonation curing as an alternative to conventional steam curing in the precast concrete industry from environmental and practical viewpoints. Four combinations of carbonation and steam curing conditions were applied as curing regimes to the samples at an early age. The test results indicated that the samples treated with the combined carbonation and steam curing exhibited higher early strength development compared to the other samples, signifying that carbonation curing can reduce the production time of precast concrete. Furthermore, the CO2 uptake capacity of the samples was calculated and found to be as high as 18% with respect to the mass of the paste samples. Hence, the simultaneous utilization of steam and CO2 for the fabrication of precast concrete members has the potential to make precast concrete greener and more cost-effective.

의류소재 이미지 분류에 따른 직물 특성 연구 (A Study of Fabric Properties for Classified on Apparel Material Image)

  • 박기윤
    • 한국의상디자인학회지
    • /
    • 제3권1호
    • /
    • pp.15-31
    • /
    • 2001
  • Textile fabrication affected by consumer and selected by fashion designer. The textile fabrication has been made not only by introducing the newly developed fiber but also by modifying the existing textile materials to impart sensibility to them. Consumers choose but to their sensibility of textile material and fashion trend. On purpose in this research is find out have influence on textile image. Wool fabrics have been in use from early age in northern Europe. Recognition of the role of the morphological structure, surface properties, chemical composition, acid-base characteristics in the chemical treatment of wool led to quantum advances in the fields of setting, shrink-resisting, chemical modification, and internal fiber cross-linking. Mechanical finishing to develop the handle, drape, and surface characteristics of the fabric is at least as important as chemical or wet finishing. Result showed that to have variety sensibility and trend theme in wool fabrics are tweed, venetian, serge, gabardine and melton.

  • PDF

분말형 폴리머 시멘트모르타르의 강도 특성 (Strength Properties of Polymer-Modified Cement Mortar)

  • 김성수;정호섭;이정배;윤하영;한승우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.571-574
    • /
    • 2005
  • This study investigated the strength of concrete to improve construction material with polymer cement mortar. Some mixtures composed of Styrene-Butadiene Rubber(SBR) and Ethylene Vinyl Acetate(EVA) Poly Vinyl Alcohol(PVA) were studied. The three mixtures carried out the physical, mechanical test to determine its properties which a include : compressive, flexural, bond strength test. The test results show that the compressive strength was increased at long-term age when compared to early ages for increasing polymer contents. It was found that flexural strength and bond strength became larger as polymer to cement ratio became higher.

  • PDF

수축저감제의 종류 및 혼입률에 따른 변형경화형 시멘트복합체의 역학적 특성 (Effects of Shrinkage Reducing Agent (SRA) Type and Content on Mechanical Properties of Strain Hardening Cement Composite (SHCC))

  • 한승주;장석준;길배수;최무진;윤현도
    • 콘크리트학회논문집
    • /
    • 제28권1호
    • /
    • pp.41-48
    • /
    • 2016
  • 본 연구는 두 종류의 수축저감제를 혼입한 변형경화형 시멘트 복합체(SHCC)의 압축, 인장 및 휨 특성을 평가하기 위하여 계획되었으며, 재령과 수축저감제의 종류 및 혼입률을 변수로 진행되었다. SHCC는 설계기준압축강도 50 MPa이며, 섬유는 PVA 섬유를 2.2% 혼입하였다. 배합에 혼입된 수축저감제는 상변이 물질로 수화현상으로 발생되는 열을 흡수 또는 방출하여 급격한 수축 및 팽창을 제어하는 물질이다. 수축저감제의 혼입에 대한 영향은 선변형 길이변화 실험과 압축, 인장 및 휨 성능의 측면에서 평가되었으며, 수축저감제를 혼입할 경우 초기 재령에서의 수축량이 감소되었다. 또한 수축저감제를 혼입함에 따라 균열 분산 성능과 인장 및 휨 성능이 개선되었다.

강섬유 보강 콘크리트의 조기 재령에서의 휨 인성 발현에 관한 연구 (Investigation of Flexural Toughness Development of Steel Fiber Reinforced Concrete at Early Ages)

  • 이창준;신성우
    • 한국안전학회지
    • /
    • 제24권6호
    • /
    • pp.103-110
    • /
    • 2009
  • Since the mechanical properties of cement-based materials are time-dependent due to the prolonged cement hydration process, those of fiber reinforced concrete(FRC) may also be time-dependent. Toughness is one of important properties of FRC. Therefore, it should be investigated toughness development of FRCs with curing ages to fully understand the time-dependent characteristics of FRCs. To this end, the effect of curing ages on flexural toughness development of steel fiber reinforced concrete is studied. Three point bending test with notched beam specimen was adapted for this study. Hooked-end steel fiber(DRAMIX 40/30) was used as a fiber ingredient to investigate w/c ratio and fiber volume fraction effect on toughness development during curing. Three different water-cement ratios(0.44, 0.5 and 0.6) and fiber volume fractions(0%, 0.5% and 1%) were used as influence factors. Each mixture specimens were tested at five different ages, 0.5, 1, 3, 7 and 28 days. The study shows that flexure toughness development with age is quite different than other concrete material properties such as compressive strength. The study also shows that the toughness development trend correlates more closely to water/cement ratio than to fiber volume fraction.

Experimental study on geopolymer concrete prepared using high-silica RHA incorporating alccofine

  • Parveen, Parveen;Singhal, Dhirendra;Jindal, Bharat Bhushan
    • Advances in concrete construction
    • /
    • 제5권4호
    • /
    • pp.345-358
    • /
    • 2017
  • This paper describes the experimental investigation carried out to develop geopolymer concrete using rice husk ash (RHA) along with alccofine. The study reports the fresh and hardened properties of the geopolymer concrete (GPC) activated using alkaline solution. GPC were prepared using different RHA content (350, 375 and $400kg/m^3$), the molarity of the NaOH (8, 12 and 16M). The specimens were cured at $27^{\circ}C$ and $90^{\circ}C$. GPC was activated using NaOH, $Na_2SiO_3$, and alccofine. Prepared GPC samples were tested for compressive and splitting tensile strengths after 3, 7 and 28 days. RHA was suitable to produce geopolymer concrete. Results indicate that behavior of GPC prepared with RHA is similar to fly ash based GPC. Workability and strength can be improved by incorporating the alccofine. Further, alccofine and heat curing improve the early age properties of the GPC. Heat curing is responsible for the initial polymerization of GPC which leads to high workability and improved mechanical properties of the GPC. High strength can be achieved by using the high concentration alkaline solution in terms of molarity and at elevated heat curing. Further, RHA based geopolymer concrete has tremendous potential as a substitute for ordinary concrete.

Prediction of Temperature and Moisture Distributions in Hardening Concrete By Using a Hydration Model

  • Park, Ki-Bong
    • Architectural research
    • /
    • 제14권4호
    • /
    • pp.153-161
    • /
    • 2012
  • This paper presents an integrated procedure to predict the temperature and moisture distributions in hardening concrete considering the effects of temperature and aging. The degree of hydration is employed as a fundamental parameter to evaluate hydro-thermal-mechanical properties of hardening concrete. The temperature history and temperature distribution in hardening concrete is evaluated by combining cement hydration model with three-dimensional finite element thermal analysis. On the other hand, the influences of both self-desiccation and moisture diffusion on variation of relative humidity are considered. The self-desiccation is evaluated by using a semi-empirical expression with desorption isotherm and degree of hydration. The moisture diffusivity is expressed as a function of degree of hydration and current relative humidity. The proposed procedure is verified with experimental results and can be used to evaluate the early-age crack of hardening concrete.

무시멘트 알칼리 활성 고로슬래그 콘크리트의 배합에 따른 재료 역학적 특성 (Synthesis and Mechanical Properties of Alkali-Activated Slag Concretes)

  • 송진규;이강석;한선애;김용인
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.1005-1008
    • /
    • 2008
  • 본 연구에서는 시멘트의 대체재로써 고로슬래그를 사용한 무시멘트 알칼리 활성화 고로슬래그 콘크리트의 배합에 따른 기본적인 역학적 특성에 대해 파악하였다. 압축강도에 영향을 줄 수 있는 변수를 기존의 모르터 연구 및 예비 실험을 통해 설정한 후 배합하여 1, 3, 7, 28, 56, 91일의 압축강도를 측정하였다. 압축강도 실험에서 알칼리 활성 고로슬래그 콘크리트는 OPC(보통 포틀랜드 시멘트) 콘크리트에 비해 초기 강도가 빠르게 발현되었으며, 특히 1, 3일 강도는 OPC 콘크리트보다 약 $1.5{\sim}3$배 정도 높게 나타났다. 응력-변형률 관계에서는 알칼리 활성 고로슬래그 콘크리트는 최대 응력 이후에 변형률이 $0.0020{\sim}0.0025$에서 콘크리트의 파괴가 급격히 발생하였으며, 규산나트륨을 많이 첨가한 경우 고강도 콘크리트처럼 취성적 파괴를 보였다.

  • PDF

팽창점토를 사용한 경량콘크리트의 특성에 관한 실험적 연구 (An Experimental Study on the Properties of Lightweight Concrete Using Expanded Clay)

  • 김종인;최영화;하상진
    • 한국산업융합학회 논문집
    • /
    • 제5권3호
    • /
    • pp.225-232
    • /
    • 2002
  • The purpose of this study is to find the mechanical properties of lightweight concrete using expanded clay. Thus, slump, air content, compressive strength, elastic modulus, tensile strength, length change ratio, unitweight change ratio and absorption of lightweight concrete have been investigated. The conclusions of this study are as follows ; 1. The loss of slump and air content of concrete increased as the expanded clay content increased and the size of coarse aggregate decreased. 2. The compressive strength of concrete using 100% expanded clay of 13, 19mm size at 28 days were respectively 282, $252kgf/cm^2$. 3. The elastic modulus and tensile strength of concrete decreased with increase of expanded clay content. 4. The length change ratio of concrete increased with the larger coarse aggregate size, and decreased with the increase of expanded clay content. 5. The unit weight of concrete decreased with the increase of expanded clay content, and the ratio of that was larger at the early age.

  • PDF

Early-age thermal analysis and strain monitoring of massive concrete structures

  • Geng, Yan;Li, Xiongyan;Xue, Suduo;Li, Jinguang;Song, Yanjie
    • Computers and Concrete
    • /
    • 제21권3호
    • /
    • pp.279-289
    • /
    • 2018
  • Hydration heat and thermal induced cracking have always been a fatal problem for massive concrete structures. In order to study a massive reinforced concrete wall of a storage tank for liquefied natural gas (LNG) during its construction, two mock-ups of $0.8m{\times}0.8m{\times}0.8m$ without and with metal corrugated pipes were designed based on the actual wall construction plan. Temperature distribution and strain development of both mock-ups were measured and compared inside and on the surface of them. Meanwhile, time-dependent thermal and mechanical properties of the concrete were tested standardly and introduced into the finite-element (FE) software with a proposed hydration degree model. According to the comparison results, the FE simulation of temperature field agreed well with the measured data. Besides, the maximum temperature rise was slightly higher and the shrinkage was generally larger in the mock-up without pipes, indicating that corrugated pipes could reduce concrete temperature and decrease shrinkage of surrounding concrete. In addition, the cooling rate decreased approximately linearly with the reduction of heat transfer coefficient h, implying that a target cooling curve can be achieved by calculating a desired coefficient h. Moreover, the maximum cooling rate did not necessarily decrease with the extension of demoulding time. It is better to remove the formwork at least after 116 hours after concrete casting, which promises lower risk of thermal cracking of early-age concrete.