• Title/Summary/Keyword: early-age cracking

Search Result 80, Processing Time 0.025 seconds

Degree of hydration-based thermal stress analysis of large-size CFST incorporating creep

  • Xie, Jinbao;Sun, Jianyuan;Bai, Zhizhou
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.263-279
    • /
    • 2022
  • With the span and arch rib size of concrete-filled steel tube (CFST) arch bridges increase, the hydration heat of pumped mass concrete inside large-size steel tube causes a significant temperature variation, leading to a risk of thermal stress-induced cracking during construction. In order to tackle this phenomenon, a hydration heat conduction model based on hydration degree was established through a nonlinear temperature analysis incorporating an exothermic hydration process to obtain the temperature field of large-size CFST. Subsequently, based on the evolution of elastic modulus based on hydration degree and early-age creep rectification, the finite element model (FEM) model and analytical study were respectively adopted to investigate the variation of the thermal stress of CFST during hydration heat release, and reasonable agreement between the results of two methods is found. Finally, a comparative study of the thermal stress with and without considering early-age creep was conducted.

Determination of Degree of Hydration, Temperature and Moisture Distributions in Early-age Concrete (초기재령 콘크리트의 수화도와 온도 및 습도분포 해석)

  • 차수원;오병환;이형준
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.813-822
    • /
    • 2002
  • The purpose of the present study is first to refine the mathematical material models for moisture and temperature distributions in early-age concrete and then to incorporate those models into finite element procedure. The three dimensional finite element program developed in the present study can determine the degree of hydration, temperature and moisture distribution in hardening concrete. It is assumed that temperature and humidity fields are fully uncoupled and only the degree of hydration is coupled with two state variables. Mathematical formulation of degree of hydration Is based on the combination of three rate functions of reaction. The effect of moisture condition as well as temperature on the rate of reaction is considered in the degree of hydration model. In moisture transfer, diffusion coefficient is strongly dependent on the moisture content in pore system. Many existing models describe this phenomenon according to the composition of mixture, especially water to cement ratio, but do not consider the age dependency. Microstructure is changing with the hydration and thus transport coefficients at early ages are significantly higher because the pore structure in the cement matrix is more open. The moisture capacity and sink are derived from age-dependent desorption isotherm. Prediction of a moisture sink due to the hydration process, i.e. self-desiccation, is related to autogenous shrinkage, which may cause early-age cracking in high strength and high performance concrete. The realistic models and finite element program developed in this study provide fairly good results on the temperature and moisture distribution for early-age concrete and correlate very well with actual test data.

Variation of Bilinear Stress-Crack Opening Relation for Tensile Cracking of Concrete at Early Ages (초기재령에서 콘크리트 인장균열에 대한 쌍선형 응력-균열 개구 관계의 변화)

  • Kwon, Seung-Hee;Choi, Kang;Lee, Yun;Park, Hong-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.427-435
    • /
    • 2010
  • One of the most vulnerable properties in concrete is tensile cracking, which usually happens at early ages due to hydration heat and shrinkage. In order to accurately predict the early age cracking, it needs to find out how stress-crack opening relation is varying over time. In this study, inverse analyses were performed with the existing experimental data for wedge-splitting tests, and the parameters of the softening curve for the stress-crack opening relation were determined from the best fits of the measured load-CMOD curves. Based on the optimized softening curve, variation of fracture energy over time was first examined, and a model for the stress-crack opening relation at early ages was suggested considering the found feature of the fracture energy. The model was verified by comparisons of the peak loads, CMODs at peak loads, and fracture energies obtained from the experiments and the inverse analysis.

Experimental Investigation on Variation of Internal Relative Humidity and Temperature due to Hydration of Concrete at Early Age (내부 온습도 측정을 통한 초기재령의 콘크리트 내부 습도 및 수화열 변화 특성 분석)

  • Hong, Sung-Ki;Park, Cheol-Woo;Park, Sung-Jae;Kang, Tae-Sung;Kim, Hee-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.741-744
    • /
    • 2008
  • Quality control of early age concrete significantly influences the long term performance. Primary factors for early age concrete quality control should include the relative humidity and temperature variation, and these are more important as structures become massive and huge. Temperature raise due to cement hydration causes stress, which can develop to cracking with internal and/or external restraints. Exposure conditions including ambient temperature, humidity and wind also significantly affect the cracking behavior of early age concrete. Among many of studies on the early age concrete behavior, investigation on the variation of temperature and relative humidity internal of concrete is not common. That is in part because the difficulties in measuring the relative humidity and temperature inside the concrete. This study used a digital sensor with an appropriate logger to measure internal temperature and relative humidity. This direct measuring method is expected to provide more reliable and comprehensive data acquisition on the early age behavior of concrete.

  • PDF

Crack Control of Early-Age High Strength Concrete Deck in Composite Bridge (합성거더교 초기재령 고강도 콘크리트 바닥판의 균열 제어)

  • Bae, Sung-Geun;Kim, Se-Hun;Jeong, Sang-Kyoon;Cha, Soo-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.493-496
    • /
    • 2008
  • The risk of transverse cracking in concrete decks of composite bridges is affected by many factors related to the bridge design, materials, and construction. Among others, the thermal and shrinkage stresses are the most important factors that affect the transverse cracking in early-age concrete decks. The thermal stress at the concrete deck is mainly affected by both ambient temperature and solar radiation. The shrinkage stress at the general strength concrete deck is mainly affected by drying shrinkage and the high strength concrete deck is mainly affected by autogeneous shrinkage. Three-dimensional finite element models of composite bridges were made to investigate the stress due to thermal and shrinkage stress.

  • PDF

Monitoring of bridge overlay using shrinkage-modified high performance concrete based on strain and moisture evolution

  • Yifeng Ling;Gilson Lomboy;Zhi Ge;Kejin Wang
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.2
    • /
    • pp.155-174
    • /
    • 2023
  • High performance concrete (HPC) has been extensively used in thin overlay for repair purpose due to its excellent strength and durability. This paper presents an experiment, where the sensor-instrumented HPC overlays have been followed by dynamic strain and moisture content monitoring for 1 year, under normal traffic. The vibrating wire and soil moisture sensors were embedded in overlay before construction. Four given HPC mixes (2 original mixes and their shrinkage-modified mixes) were used for overlays to contrast the strain and moisture results. A calibration method to accurately measure the moisture content for a given concrete mixture using soil moisture sensor was established. The monitoring results indicated that the modified mixes performed much better than the original mixes in shrinkage cracking control. Weather condition and concrete maturity at early age greatly affected the strain in concrete. The strain in HPC overlay was primarily in longitudinal direction, leading to transverse cracks. Additionally, the most moisture loss in concrete occurred at early age. Its rate was very dependent on weather. After one year, cracking survey was carried out by vision to verify the strain direction and no cracks observed in shrinkage modified mixes.

Tc-To Method in Measurement of Concrete Crack (Tc-To법에 의한 콘크리트 균열측정)

  • 민정기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.3
    • /
    • pp.108-114
    • /
    • 1997
  • Concrete is said to have a high degree of extensibility when it is subjected to large deformations without cracking. The cracking behavior of concrete in the field may even be more complex. For example, in mass concrete compressive stresses are developed during the very early period when temperatures are rising, and the tensile stresses do not develop until at a later age when the temperature begins to decline. Actual cracking and failure depend on the combination of factors and indeed it is rarely that a single adverse factor is responsible for cracking of concrete. The importance of cracking and the minimum width at which a crack is considered significant depend on the conditions of exposure of the concrete. The ultrasonic pulse measurements can be used to detect the development of cracks in structures such as dams, and to check deterioration due to frost or chemical action. An estimate of the depth of a crack visible at the surface can be obtained by measuring the transit times across the crack for two different arrangements of the transducers placed on the surface. In this paper, the concrete cracks that artificially introduced crack width is 1 and 2mm, crack depth is 2, 4, 6, 8cm were measured by Tc-To Method In consequence, the measured depth was increased with increase of measuring distance from concrete crack. The most reliable results were shown when the introduced crack width was 1mm, and the measuring distance was 10cm from concrete crack.

  • PDF

Thermo-mechanical behavior of prestressed concrete box girder at hydration age

  • Zhang, Gang;Zhu, Meichun;He, Shuanhai;Hou, Wei
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.529-537
    • /
    • 2017
  • Excessively elevated temperature can lead to cracks in prestressed concrete (PC) continuous bridge with box girder on the pier top at cement hydration age. This paper presents a case study for evaluating the behavior of PC box girder during the early hydration age using a two-stage computational model, in the form of computer program ANSYS, namely, 3-D temperature evaluation and determination of mechanical response in PC box girders. A numerical model considering time-dependent wind speed and ambient temperature in ANSYS for tracing the thermal and mechanical response of box girder is developed. The predicted results were compared to show good agreement with the measured data from the PC box girder of the Zhaoshi Bridge in China. Then, based on the validated numerical model three parameters were incorporated to analyze the evolution of the temperature and stress within box girder caused by cement hydration heat. The results of case study indicate that the wind speed can change the degradation history of temperature and stress and reduce peak value of them. The initial casting temperature of concrete is the most significant parameter which controls cracking of PC box girder on pier top at cement hydration age. Increasing the curing temperature is detrimental to prevent cracking.

Autogenous shrinkage of ultra high performance concrete considering early age coefficient of thermal expansion

  • Park, Jung-Jun;Yoo, Doo-Yeol;Kim, Sung-Wook;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.763-773
    • /
    • 2014
  • The recently developed Ultra High Performance Concrete (UHPC) displays outstanding compressive strength and ductility but is also subjected to very large autogenous shrinkage. In addition, the use of forms and reinforcement to confine this autogenous shrinkage increases the risk of shrinkage cracking. Accordingly, this study adopts a combination of shrinkage reducing admixture and expansive admixture as a solution to reduce the shrinkage of UHPC and estimates its appropriateness by evaluating the compressive and flexural strengths as well as the autogenous shrinkage according to the age. Moreover, the coefficient of thermal expansion known to experience sudden variations at early age is measured in order to evaluate exactly the autogenous shrinkage and the thermal expansion is compensated considering these measurements. The experimental results show that the compressive and flexural strengths decreased slightly at early age when mixing 7.5% of expansive admixture and 1% of shrinkage reducing admixture but that this decrease becomes insignificant after 7 days. The use of expansive admixture tended to premature the setting of UHPC and the start of sudden increase of autogenous shrinkage. Finally, the combined use of shrinkage reducing admixture and expansive admixture appeared to reduce effectively the autogenous shrinkage by about 47% at 15 days.

A Study on the Cracking Control Effects of Shrinkage Reduction Concrete (수축보상형 콘크리트의 균열억제 효과에 관한 연구)

  • Choi, Hyeong-Gil;Kim, Gyu-Yong;Noguchi, Takafumi
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.569-577
    • /
    • 2015
  • The aim of this study is to qualitatively evaluate the cracking control effects of expansive concrete used in reinforced concrete building. The result of experiments in laboratory shows that autogenous shrinkage and drying shrinkage are suppressed by using expansive additive. The tensile stress-strength ratio is lower in expansive concrete than normal concrete under fully restrained condition. Compression stress could be effectively generated in early age in the walls in buildings by the use of expansive additive, and tensile stress due to drying shrinkage at later age eventually decreased. Additionally, visual observation at long-term ages shows that the cracking area of expansive concrete was approximately 35% of normal concrete, which confirms that the use of expansive additive reduces concrete cracking in reinforced concrete buildings.