• Title/Summary/Keyword: early-age concrete

Search Result 584, Processing Time 0.034 seconds

An Experimental Study on Compressive Strength and the Chloride Content of Concrete with Substitution Ratio of Recycled Fine Aggregate and Limestone Power (순환잔골재 및 석회석 미분말 치환율에 따른 콘크리트 강도와 염화물량에 관한 실험적 연구)

  • Lee, Soo-Hyung;Kong, Tae-Woong;Jang, Jae-Hwan;Lee, Han-Baek
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.597-600
    • /
    • 2008
  • Correspond in chloride content increase by sea sand uses of bad quality using recycled fine aggregate in this research. together, examined basic properties of matter for activation of been using recycled fine aggregate use definitely. Also, super fundamental principles that is shortcoming that blast furnace slag differential speech has prevents problem of decline and change of countenance limestone power differential speech by purpose to contribute in early age strength as Filler role special quality examine. As experiment result, compressive strength at recycled fine aggregate 10%, limestone power 20% metathesis the highest compressive strength value appear, According to recycled fine aggregate metathesis rate increase, the chloride content reduced by 0.127 ㎏/m$^3$s(metathesis rate 0%), 0.119 ㎏/m$^3$s (metathesis rate 10%), 0.112 ㎏/m$^3$s (metathesis rate l20%), 0.097 ㎏/m$^3$s (metathesis rate 30%).

  • PDF

Effects of Cement Fineness Modulus (CFM) on the Fundamental Properties of Concrete (시멘트 입도계수(CFM)가 콘크리트의 기초적 특성에 미치는 영향)

  • Noh, Sang-Kyun;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.284-290
    • /
    • 2012
  • Cement Fineness Modulus (CFM) is a method of expressing the distribution of particle sizes of cement in numeric form. If CFM is controlled through crush process of cement without modifying the chemical components or mineral composition of cement, it is judged to be able to produce a cement satisfying various requirements because it is estimated to enable various approaches to cement such as high early strength, moderate heat, low heat cement and so on. Therefore, in this study, as basic research for manufacturing special cement utilizing the controls of CFM, the intention was to review the impacts of CFM on the fundamental properties of concrete. To summarize the result, as mixture characteristics of fresh concrete, ratio of small aggregate and unit quantity were gradually increased, securing greater fluidity, with an increase in CFM, while the amount of AE and SP were reduced gradually. In addition, setting time was delayed as CFM increased. Furthermore, compression strength was relatively high during initial aging as CFM became smaller, but as time passed, compression strength became smaller, and it showed the same level of strength as aging time passed about three years.

Service Life Evaluation of RC Column Exposed to Carbonation Considering Time-dependent Crack Pattern (시간의존성 균열 패턴을 고려한 탄산화에 노출된 콘크리트의 확률론적 내구수명 평가)

  • Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.10-18
    • /
    • 2016
  • RC(Reinfored Concrete) structures exposed to carbonation in urban city have durability degradation with extended service life and cracks in concrete causes a local accelerated carbonation. In the present work, crack effect on carbonation depth is investigated and the service life of RC structure is evaluated considering cracks from early age and time-dependent cracks based on the previous field investigation. DFP(Durability Failure Probability), safety index, and the related service life are calculated considering the time to crack width reaches to maximum crack width(0.3mm). The results with time effect on crack width show lower DFP and longer service life, which seems to be reasonable compared with conservative results from crack effect from initial stage. Furthermore, crack effect is evaluated to be insignificant on DFP and service life. The technique with time-dependent crack effect on carbonation can be effectively used for RC structure containing cracking in use.

Variation of Friction Coefficient of Airport Runway Surface by Rubber Deposits (고무 퇴적물에 의한 공항 활주로 표면 마찰계수 변화)

  • Cheon, Sung-Han;Lim, Jin-Sun;Park, Joo-Young;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.131-137
    • /
    • 2010
  • In this paper, overseas criteria and research results were reviewed to develop a rational criterion proper to domestic airport runways on measurement of friction coefficient and removal of rubber deposit. The friction coefficients of the runways of the Incheon International Airport were measured by the ASFT(Airport Surface Friction Tester) from August 2007 to July 2009 and the data at intensively landed points were analyzed. Variation of the friction coefficient due to accumulation and removal of tire rubber was analyzed and seasonal influence on the variation were investigated by pavement types. The friction coefficient steadily decreased over a long term despite periodical removal of the rubber deposits. The variation of the friction coefficient in summer was larger than other seasons and asphalt pavement was more sensitive to the seasonal influence than concrete pavement. The friction coefficient of the asphalt pavement with macro texture was even larger than that of early age concrete pavement with micro texture. The variation of the friction coefficient of the asphalt pavement due to the deposit and removal of the tire rubber was also larger than that of the concrete pavement.

Mixture Study for Early-age Strength Improvement of NAC-typed High-strength Concrete Piles (NAC 방식 고강도 콘크리트 파일의 초기강도증진을 위한 배합에 대한 연구)

  • Yi, Seong Tae;Noh, Jae Ho;Heo, Hyung Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.58-64
    • /
    • 2012
  • Due to the influence of global oil prices, industrial productivity, which oil consumption is high, was significantly reduced. AC type of high-strength PHC piles is being manufactured through twice the steam curing process and this have resulted in a significant rise for product's manufacturing costs. NAC way other types of file manufacturing process has the advantage of reducing manufacturing costs by a turn of the steam curing. Nevertheless, because the initial strength be poor than that of AC method, shipment is being after the curing period of approximately three days. In addition, the growth of the product enhance with curing period can not be avoided, as a result, cost of inventory is acting as the rise. Piles by the AC method is immediately shipped after curing, damaging problems does not occur when they are introduced to the field site (for example, pile on-site). In the case of NAC, however, at least after the curing period of three days and after expressing the strength of 80 MPa or more, they are shipped on the scene. Therefore, NAC type has problems as follows: (1) increase in moderate inventory holding costs with type and (2) breakage in the field due to lack of strength. In this study, for NAC-typed PHC files, mixing characteristics research for the strength development at 1 day equivalent to AC method were conducted and strength characteristics with changes of original materials were evaluated were also identified.

An Economic Mix Design Methodology for the Development of Concrete Strength at Low Temperature (저온에서의 콘크리트 강도 확보를 위한 경제적 배합 방안)

  • Kim, Sang-Chel;Kim, Yong-Jic;Kim, Young-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.95-103
    • /
    • 2012
  • Precast concrete method is known to have advantages of minimizing works in the construction, controlling concrete quality easily and saving construction period due to only fabrication work in the construction field, but it needs to apply steam curing to accelerate early concrete strength. In the meanwhile, the oil cost for steam curing has been continuously increased because of political instability in the middle East and international economic shaky. Thus, this study addresses the development of precast/ prestressed concrete which has over 14MPa at 1 day age and specified concrete strength of 40MPa at low temperature, not applying steam curing. Tests were carried out in terms of material characteristics in fresh concrete and compressive strength using 3 types of cement such as Type I, Type III and rapid hardening compound cement. As results of tests, it is found that cements for rapid hardening had disadvantages with respect to slump, slump loss, and air content, but showed higher compressive strength than specified one, especially the highest value when using rapid hardening compound.

  • PDF

Hydration Properties of Ordinary Portland Cement Using Mixture of Limestone and Blast Furnace Slag as Minor Inorganic Additives (소량 혼합재로서 석회석과 고로슬래그를 복합 사용한 보통 포틀랜드 시멘트의 수화특성)

  • Lee, Seung-Heun;Lim, Young-Jin;Cho, Jae-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.3-9
    • /
    • 2015
  • In this study, hydration properties of ordinary Portland cement were examined, shown from a limestone and blast furnace slag alone or their mixture up to 10% as a minor mineral additives. As of setting time, it was identified that final setting became faster as the amount of limestone mixture increased, which showed limestone accelerated early hydration faster than blast furnace slag. This is because limestone did accelerate the hydration of alite. At the age of 3 days, limestone 5%-blast furnace slag 5% mixture had the highest compressive strength of mortar. It is because hydration acceleration of alite by limestone, and $Ca(OH)_2$ that was additionally formed by hydration acceleration of alite reacted with blast furnace slag, and as a result, additionally created C-S-H hydrate. Regarding the hydration properties by the age of 7 and 28 days, limestone 3%-blast furnace slag 7% of composited mixture showed the largest compressive strength, and in comparison with the 3 days in curing age. This period is when hydration reaction of blast furnace slag is active and the amount of hydrate depends on the amount of blast furnace slag mixture more than that of the limestone mixture. And in order to vitalize hydration reaction of blast furnace slag the amount of $Ca(OH)_2$ created has to increase, and thus, a small amount of limestone is necessary that can accelerate the hydration of alite. Therefore, after the age of 7 days, the fact that there were a large amount of blast furnace slag mixture and small amount of limestone mixture was effective to the strength development of ordinary Portland cement.

A Fundamental Experiment on Preventing Frost Damage at Early Age of Mortar in Low Temperature using Reduction Slag (환원슬래그를 사용한 모르타르의 저온에서의 초기동해 방지에 관한 기초적 실험)

  • Min, Tae-Beom;Mun, Young-Bum;Kim, Hyeong-Cheol;Choi, Hyun-Kuk;Kim, Jae-Young;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • In this research, it used cement powder and reduction slag, which generates high hydration heat in hydration reaction without heat cure below $-5^{\circ}C$ degree. Purpose of final research is preventing freezing and thawing by making the compressive strength 5MPa in 3days below zero temperature due to own heat of concrete. and it is the result of physical characteristic and thermal property evaluation of reduction slag. Because reduction slag generates high hydration heat, compressive strength development is excellent. By generating highly hydration heat by $C_{12}A_7$ and $C_3A$ in reduction slag, compressive strength is developed in low temperature. In case of displacing only reduction slag without $SO_3$, it is indicated that quick-setting occurs by shortage of $SO_3$. For preventing quick-setting, gypsum is used essentially. According to this research result, in case of using reduction slag and gypsum as a ternary system, compressive strength developed 5MPa in 3 days below zero temperature. It is identified to prevent early frost damage of concrete below zero temperature.

Effect of micro-silica on mechanical and durability properties of high volume fly ash recycled aggregate concretes (HVFA-RAC)

  • Shaikh, Faiz;Kerai, Sachin;Kerai, Shailesh
    • Advances in concrete construction
    • /
    • v.3 no.4
    • /
    • pp.317-331
    • /
    • 2015
  • This paper presents the effect of different micro-silica (MS) contents of 5, 10 and 15 wt.% as partial replacement of cement on mechanical and durability properties of high volume fly ash - recycled aggregate concretes (HVFA-RAC) containing 50% class F fly ash (FA) and 35% recycled coarse aggregate (RCA) as partial replacement of cement and natural coarse aggregate (NCA), respectively. The measured mechanical and durability properties are compressive strength, indirect tensile strength, elastic modulus, drying shrinkage, water sorptivity and chloride permeability. The effects of different curing ages of 7, 28, 56 and 91 days on above properties are also considered in this study. The results show that the addition of MS up to 10% improved the early age (7 days) strength properties of HVFA-RAC, however, at later ages (e.g. 28-91 days) the above mechanical properties are improved for all MS contents. The 5% MS exhibited the best performance among all MS contents for all mechanical properties of HVFA-RAC. In the case of measured durability properties, mix results are obtained, where 10% and 5% MS exhibited the lowest sorptivity and drying shrinkage, respectively at all ages. However, in the case of chloride ion permeability a decreasing trend is observed with increase in MS contents and curing ages. Strong correlations of indirect tensile strength and modulus of elasticity with square root of compressive strength are also observed in HVFA-RAC. Nevertheless, it is established in this study that MS contributes to the sustainability of HVFA-RAC significantly by improving the mechanical and durability properties of concrete containing 50%less cement and 35% less natural coarse aggregates.

Flowability and Strength of Cement Composites with Different Dosages of Multi-Walled CNTs (다중벽 탄소나노튜브의 혼입량에 따른 시멘트 복합체의 유동성 및 강도 변화)

  • Ha, Sung-Jin;Kang, Su-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • With several different dosages of multi-walled CNTs which was 0.1, 0.3, and 0.5% of the weight of binder, the fluidity in fresh CNT cement composites, as well as the strength and strength development with age of the hardened composites were investigated in this experimental study. The experimental results from flow test indicated that the increase in the dosage of CNTs badly impacted on the workability of fresh composites, and the results from rheological measurements presented the decrease in plastic viscosity and the increase in yield stress according to the amount of CNTs. In addition, the thixotrophy in the flow curve obtained from the rheology test was observed more noticeably in the composites with higher dosage of CNTs. With the experiments on the strength properties, the improvement of both compressive and tensile strengths with the increase of CNTs dosage could be obtained. Moreover, early strength development by adding CNTs was found when it was compared with plain cementious matrix without CNT.