• Title/Summary/Keyword: eRNAs

Search Result 199, Processing Time 0.021 seconds

RNA Metabolism in T Lymphocytes

  • Jin Ouk Choi;Jeong Hyeon Ham;Soo Seok Hwang
    • IMMUNE NETWORK
    • /
    • v.22 no.5
    • /
    • pp.39.1-39.18
    • /
    • 2022
  • RNA metabolism plays a central role in regulating of T cell-mediated immunity. RNA processing, modifications, and regulations of RNA decay influence the tight and rapid regulation of gene expression during T cell phase transition. Thymic selection, quiescence maintenance, activation, differentiation, and effector functions of T cells are dependent on selective RNA modulations. Recent technical improvements have unveiled the complex crosstalk between RNAs and T cells. Moreover, resting T cells contain large amounts of untranslated mRNAs, implying that the regulation of RNA metabolism might be a key step in controlling gene expression. Considering the immunological significance of T cells for disease treatment, an understanding of RNA metabolism in T cells could provide new directions in harnessing T cells for therapeutic implications.

Periodontopathogen LPSs Regulate MicroRNA Expression in Human Gingival Epithelial Cells

  • Lee, Hwa-Sun;Na, Hee-Sam;Jeong, So-Yeon;Jeong, Sung-Hee;Park, Hae-Ryoun;Chung, Jin
    • International Journal of Oral Biology
    • /
    • v.36 no.3
    • /
    • pp.109-116
    • /
    • 2011
  • Periodontitis results from the activation of host immune and inflammatory defense responses to subgingival plaque bacteria, most of which are gram-negative rods with lipopoly-saccharides (LPSs) in their cell walls. LPSs have been known to induce proinflammatory responses and recently it was reported also that they induce the expression of microRNAs (miRNAs) in host cells. In our current study therefore, we aimed to examine and compare the miRNA expression patterns induced by the LPSs of major periodontopathogens in the human gingival epithelial cell line, Ca9-22. The cells were treated with 1 ${\mu}g$/ml of E. coli (Ec) LPS or 5 ${\mu}g$/ml of an LPS preparations from four periodontopathogens Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Aggregatibacter actinomycetemcomitans (Aa), and Fusobacterium nucleatum (Fn) for 24 h. After small RNA extraction from the treated cells, miRNA microarray analysis was carried out and characteristic expression profiles were observed. Fn LPS most actively induced miRNAs related to inflammation, followed by Aa LPS, Pi LPS, and Ec LPS. In contrast, Pg LPS only weakly activated miRNAs related to inflammation. Among the miRNAs induced by each LPS, miR-875-3p, miR-449b, and miR-520d-3p were found to be commonly up-regulated by all five LPS preparations, although at different levels. When we further compared the miRNA expression patterns induced by each LPS, Ec LPS and Pi LPS were the most similar although Fn LPS and Aa LPS also induced a similar miRNA expression pattern. In contrast, the miRNA profile induced by Pg LPS was quite distinctive compared with the other bacteria. In conclusion, miR-875-3p, miR-449b, and miR-520d-3p miRNAs are potential targets for the diagnosis and treatment of periodontal inflammation induced by subgingival plaque biofilms. Furthermore, the observations in our current study provide new insights into the inflammatory miRNA response to periodontitis.

Identification and Validation of Circulating MicroRNA Signatures for Breast Cancer Early Detection Based on Large Scale Tissue-Derived Data

  • Yu, Xiaokang;Liang, Jinsheng;Xu, Jiarui;Li, Xingsong;Xing, Shan;Li, Huilan;Liu, Wanli;Liu, Dongdong;Xu, Jianhua;Huang, Lizhen;Du, Hongli
    • Journal of Breast Cancer
    • /
    • v.21 no.4
    • /
    • pp.363-370
    • /
    • 2018
  • Purpose: Breast cancer is the most commonly occurring cancer among women worldwide, and therefore, improved approaches for its early detection are urgently needed. As microRNAs (miRNAs) are increasingly recognized as critical regulators in tumorigenesis and possess excellent stability in plasma, this study focused on using miRNAs to develop a method for identifying noninvasive biomarkers. Methods: To discover critical candidates, differential expression analysis was performed on tissue-originated miRNA profiles of 409 early breast cancer patients and 87 healthy controls from The Cancer Genome Atlas database. We selected candidates from the differentially expressed miRNAs and then evaluated every possible molecular signature formed by the candidates. The best signature was validated in independent serum samples from 113 early breast cancer patients and 47 healthy controls using reverse transcription quantitative real-time polymerase chain reaction. Results: The miRNA candidates in our method were revealed to be associated with breast cancer according to previous studies and showed potential as useful biomarkers. When validated in independent serum samples, the area under curve of the final miRNA signature (miR-21-3p, miR-21-5p, and miR-99a-5p) was 0.895. Diagnostic sensitivity and specificity were 97.9% and 73.5%, respectively. Conclusion: The present study established a novel and effective method to identify biomarkers for early breast cancer. And the method, is also suitable for other cancer types. Furthermore, a combination of three miRNAs was identified as a prospective biomarker for breast cancer early detection.

Functional Implications of the Conserved Action of Regulators of Ribonuclease Activity

  • Yeom, Ji-Hyun;Shin, Eun-Kyoung;Go, Ha-Young;Sim, Se-Hoon;Seong, Maeng-Je;Lee, Kang-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1353-1356
    • /
    • 2008
  • RNase E (Rne) plays a major role in the decay and processing of numerous RNAs in E. coli, and protein inhibitors of RNase E, RraA and RraB, have recently been discovered. Here, we report that coexpression of RraA or RraB reduces the ribonucleolytic activity in rne-deleted E. coli cells overproducing RNase ES, a Streptomyces coelicolor functional ortholog of RNase E, and consequently rescues these cells from growth arrest. These findings suggest that the regulators of ribonuclease activity have a conserved intrinsic property that effectively acts on an RNase E-like enzyme found in a distantly related bacterial species.

Implications of Streptomyces coelicolor RraAS1 as an activator of ribonuclease activity of Escherichia coli RNase E (Streptomyces coelicolor RraAS1의 Eschechia coli RNase E의 RNA 분해작용에 대한 활성제로서 기능 암시)

  • Heo, Jihune;Seo, Sojin;Lee, Boeun;Yeom, Ji-Hyun;Lee, Kangseok
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.243-248
    • /
    • 2016
  • RNase E (Rne) is an essential enzyme involved in the processing and degradation of a large portion of RNAs in Escherichia coli. The enzymatic activity of RNase E is controlled by regulators of ribonuclease activity, namely, RraA and RraB. Gram-positive bacterium Streptomyces coelicolor also contains homologs of Rne and RraA, designated as RNase ES (Rns), RraAS1, and RraAS2. In the present study, we investigated the effect of S. coelicolor RraAS1 on the ribonucleolytic activity of RNase E in E. coli. Coexpression of RraAS1 with Rne resulted in the decreased levels of rpsO, ftsZ, and rnhB mRNAs, which are RNase E substrates, and augmented the toxic effect of Rne overexpression on cell growth. These in vivo effects appeared to be induced by the binding of RraAS1 to Rne, as indicated by the results of co-immunoprecipitation analysis. These results suggested that RraAS1 induces ribonucleolytic activity of RNase E in E. coli.

Temporal Changes of c-fos, c-jun, and Heat Shock Protein 25 mRNA in Rat Uterus following Estradiol Treatment (Estrogen 처리에 따른 흰쥐 자궁조직내 c-fos, c-jun, hsp25 mRNA 발현 변화)

  • Lee, Young-Ki;Kim, Sung-Rye
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.2
    • /
    • pp.149-156
    • /
    • 1999
  • Steroid hormone is known to cause the dynamic changes of mammalian uterus during reproductive cycle, which are modulated via hypothalamus-pituitary -gonad reproductive endocrine axis. Although there were so many studies about estrogenic regulation of uterine growth and differentiation. There is little information about the effect of estrogen on the expression of various transcription factors involved in gene expression. Thus the present study was designed to demonstrate E induced expression of c-fos, c-jun, hsp25 mRNA in rat uterus. Employing Northern blot analysis, we studied the temporal expressions of c-fos, c-jun, and hsp25 messenger RNAs (mRNAs) elicited by a single 17beta-estradiol (E) treatment in the uteri of bilaterally ovariectomized adult rats. c-fos, c-jun, and hsp25 mRNA levels were increased and peaked at 3h after E administration, and then c-fos and c-jun mRNA levels were rapidly decreased to basal control level while, increased hsp25 mRNA levels were sustained till 12h post E treatment. To test the estrogenic effect on the increase of c-fos, c-jun, and hsp25 mRNA levels, we also examined the effects of antiestrogen (tamoxifen). Pretreatment with tamoxifen effectively blocked the E-induced increase of c-fos, c-jun, and hsp25 mRNA levels at 3h post E treatment. Present results suggest that transient increase of c-fos and c-jun protooncogene mRNA at the early time and simultaneous expression of hsp25 mRNA contribute to the response of uterine tissues to E in adult female rats.

  • PDF

Non-ribosomal Ribosome Assembly Factors in Escherichia coli (Escherichia coli 에서 리보솜 조립과정에 관여하는 단백질들)

  • Choi, Eunsil;Hwang, Jihwan
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.915-926
    • /
    • 2014
  • The ribosome is a protein synthesizing machinery and a ribonucleoprotein complex that consists of three ribosomal RNAs (23S, 16S and 5S) and 54 ribosomal proteins in bacteria. In the course of ribosome assembly, ribosomal proteins (r-protein) and rRNAs are modified, the r-proteins bind to rRNAs to form ribonucleoprotein complexes which are folded into mature ribosomal subunits. In this process, a number of non-ribosomal trans-acting factors organize the assembly process of the components. Those factors include GTP- and ATP-binding proteins, rRNA and r-protein modification enzymes, chaperones, and RNA helicases. During ribosome biogenesis, they participate in the modifications of ribosomal proteins and RNAs, and the assemblies of ribosomal proteins with rRNAs. Ribosomes can be assembled from a discrete set of components in vitro, and it is notable that in vivo ribosome assembly is much faster than in vitro ribosome assembly. This suggests that non-ribosomal ribosome assembly factors help to overcome several kinetic traps in ribosome biogenesis process. In spite of accumulation of genetic, structural, and biochemical data, not only the entire procedure of bacterial ribosome synthesis but also most of roles of ribosome assembly factors remain elusive. Here, we review ribosome assembly factors involved in the ribosome maturation of Escherichia coli, and summarize the contributions of several ribosome assembly factors which associate with 50S and 30S ribosomal subunits, respectively.

Exosomal miR-181b-5p Downregulation in Ascites Serves as a Potential Diagnostic Biomarker for Gastric Cancer-associated Malignant Ascites

  • Yun, Jieun;Han, Sang-Bae;Kim, Hong Jun;Go, Se-il;Lee, Won Sup;Bae, Woo Kyun;Cho, Sang-Hee;Song, Eun-Kee;Lee, Ok-Jun;Kim, Hee Kyung;Yang, Yaewon;Kwon, Jihyun;Chae, Hee Bok;Lee, Ki Hyeong;Han, Hye Sook
    • Journal of Gastric Cancer
    • /
    • v.19 no.3
    • /
    • pp.301-314
    • /
    • 2019
  • Purpose: Peritoneal carcinomatosis in gastric cancer (GC) patients results in extremely poor prognosis. Malignant ascites samples are the most appropriate biological material to use to evaluate biomarkers for peritoneal carcinomatosis. This study identified exosomal MicroRNAs (miRNAs) differently expressed between benign liver cirrhosis-associated ascites (LC-ascites) and malignant gastric cancer-associated ascites (GC-ascites), and validated their role as diagnostic biomarkers for GC-ascites. Materials and Methods: Total RNA was extracted from exosomes isolated from 165 ascites samples (73 LC-ascites and 92 GC-ascites). Initially, microarrays were used to screen the expression levels of 2,006 miRNAs in the discovery cohort (n=22). Subsequently, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analyses were performed to validate the expression levels of selected exosomal miRNAs in the training (n=70) and validation (n=73) cohorts. Furthermore, carcinoembryonic antigen (CEA) levels were determined in ascites samples. Results: The miR-574-3p, miR-181b-5p, miR-4481, and miR-181d were significantly downregulated in the GC-ascites samples compared to the LC-ascites samples, and miR-181b-5p showed the best diagnostic performance for GC-ascites (area under the curve [AUC]=0.798 and 0.846 for the training and validation cohorts, respectively). The diagnostic performance of CEA for GC-ascites was improved by the combined analysis of miR-181b-5p and CEA (AUC=0.981 and 0.946 for the training and validation cohorts, respectively). Conclusions: We identified exosomal miRNAs capable of distinguishing between non-malignant and GC-ascites, showing that the combined use of miR-181b-5p and CEA could improve diagnosis.

Isolation of Cysteine Protease Actinidin Gene from Chinese Wild Kiwifruit and its Expression in Escherichia coli

  • Lee, Nam-Keun;Hahm, Young-Tae
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.294-298
    • /
    • 2007
  • The actinidin (EC 3.4.22. 14) found in kiwifruit is a cysteine protease. In order to obtain the actinidin gene from the Chinese wild kiwifruit, primers were designed on the basis of the actinidin gene of Actinidia deliciosa, the New Zealand kiwifruit. The 1.2 kb DNA fragment was acquired from the total RNAs of Chinese wild kiwifruit via reverse transcription polymerase chain reaction (RT-PCR), and its DNA sequence was analyzed. Its sequence was determined to share 98.4% homology with the actinidin gene of A. deliciosa. In order to verity the actinidin gene isolated from the Chinese wild kiwifruit in Escherichia coli, the mature gene was amplified via PCR and expressed in E. coli under the control of the T7lac promoter. The actinidin was expressed in E. coli as inclusion bodies, which were solubilized with urea and refolded. The protease activity of the refolded protein was approximately twice as high as that of E. coli BL2l (DE3).

The Role of Stress Granules in the Neuronal Differentiation of Stem Cells

  • Jeong, Sin-Gu;Ohn, Takbum;Jang, Chul Ho;Vijayakumar, Karthikeyan;Cho, Gwang-Won
    • Molecules and Cells
    • /
    • v.43 no.10
    • /
    • pp.848-855
    • /
    • 2020
  • Cells assemble stress granules (SGs) to protect their RNAs from exposure to harmful chemical reactions induced by environmental stress. These SGs release RNAs, which resume translation once the stress is relieved. During stem cell differentiation, gene expression is altered to allow cells to adopt various functional and morphological features necessary to differentiate. This process induces stress within a cell, and cells that cannot overcome this stress die. Here, we investigated the role of SGs in the progression of stem cell differentiation. SGs aggregated during the neuronal differentiation of human bone marrow-mesenchymal stem cells, and not in cell lines that could not undergo differentiation. SGs were observed between one and three hours post-induction; RNA translation was restrained at the same time. Immediately after disassembly of SGs, the expression of the neuronal marker neurofilament-M (NF-M) gradually increased. Assembled SGs that persisted in cells were exposed to salubrinal, which inhibited the dephosphorylation of eukaryotic translation initiation factor 2 subunit 1 (eIF2α), and in eIF2α/S51D mutant cells. When eIF2α/S51A mutant cells differentiated, SGs were not assembled. In all experiments, the disruption of SGs was accompanied by delayed NF-M expression and the number of neuronally differentiated cells was decreased. Decreased differentiation was accompanied by decreased cell viability, indicating the necessity of SGs for preventing cell death during neuronal differentiation. Collectively, these results demonstrate the essential role of SGs during the neuronal differentiation of stem cells.