• Title/Summary/Keyword: eRF3

Search Result 433, Processing Time 0.034 seconds

eRF1aMC and $Mg^{2+}$ Dependent Structure Switch of GTP Binding to eRF3 in Euplotes octocarinatus

  • Song, Li;Jia, Yu-Xin;Zhu, Wen-Si;Chai, Bao-Feng;Liang, Ai-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.176-183
    • /
    • 2012
  • Eukaryotic translation termination is governed by eRF1 and eRF3. eRF1 recognizes the stop codons and then hydrolyzes peptidyl-tRNA. eRF3, which facilitates the termination process, belongs to the GTPase superfamily. In this study, the effect of the MC domain of eRF1a (eRF1aMC) on the GTPase activity of eRF3 was analyzed using fluorescence spectra and high-performance liquid chromatography. The results indicated eRF1aMC promotes the GTPase activity of eRF3, which is similar to the role of eRF1a. Furthermore, the increased affinity of eRF3 for GTP induced by eRF1aMC was dependent on the concentration of $Mg^{2+}$. Changes in the secondary structure of eRF3C after binding GTP/GDP were detected by CD spectroscopy. The results revealed changes of conformation during formation of the eRF3C GTP complex that were detected in the presence of eRF1a or eRF1aMC. The conformations of the eRF3C eRF1a GTP and eRF3C eRF1aMC GTP complexes were further altered upon the addition of $Mg^{2+}$. By contrast, there was no change in the conformation of GTP bound to free eRF3C or the eRF3C eRF1aN complex. These results suggest that alterations in the conformation of GTP bound to eRF3 is dependent on eRF1a and $Mg^{2+}$, whereas the MC domain of eRF1a is responsible for the change in the conformation of GTP bound to eRF3 in Euplotes octocarinatus.

GTPase Activity Analysis of eRF3 in Euplotes octocarinatus

  • Song, Li;Dong, Jun-Li;Zhao, Ya-Qin;Chai, Bao-Feng;Liang, Ai-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.9
    • /
    • pp.1283-1287
    • /
    • 2010
  • In eukaryotes, eRF3 participates in translation termination and belongs to the superfamily of GTPases. In this work, the dissociation constants for nucleosides bound to Euplotes octocarinatus eRF3 in the presence and absence of eRF1a were determined using fluorescence spectra methods. Furthermore, a GTP hydrolyzing assay of eRF3 was carried out using an HPLC method, and the kinetic parameters for GTP hydrolysis by eRF3 were determined. Consistent with data from humans, the results showed that eRF1a promoted the binding of GTP to eRF3 and the GTP hydrolyzing activity of eRF3. However, in contrast to the lack of GTP binding in the absence of eRF1 in human eRF3, the E. octocarinatus eRF3 was able to bind GTP by itself. The nucleotide binding affinity of the E. octocarinatus eRF3 also differed from the human data. A structure model and amino acid sequence alignment of potential G domains indicated that these differences may be due to valine 317 and glutamate 452 displacing the conserved glycine and lysine involved in GTP binding.

The Korea Institute of Information, Electronics, and Communication Technology (RF Power 변화에 의한 CdS 박막 특성에 관한 연구)

  • Lee, Dal-Ho;Park, Jung-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.2
    • /
    • pp.122-127
    • /
    • 2021
  • This paper produces CdS thin film using ITO glass as substrates. The MDS (Multiplex Deposition Sputter System) was used to produce devices by changing RF power and deposition time. The manufactured specimen was analyzed for its optical properties. The purpose of this paper is to find the fabrication conditions that can be applied to the photo-absorbing layer of solar cells. When RF power was 50W and deposition time was 10 minutes, the thickness was measured at 64Å. At 100W, the thickness was measured at 406Å and at 150 W, the thickness was measured at 889Å. Thin films were found to increase in thickness as RF power increased. As a result of the light transmittance measurement, 550-850nm was observed to have a transmittance of approximately 70% or more when the RF power was 50W, 100W, and 150W. Increasing RF power increased thickness and increased particle size, resulting in increased thin film density, resulting in reduced light transmittance. When RF power was 100W and deposition time was 15 minutes, the band gap was calculated at 3.998eV. When deposition time is 20 minutes, it is 3.987eV, 150W is 3.965eV at 15 minutes, and 3.831eV at 20 minutes. It was measured that the band gap decreased as the RF power increased. At XRD analysis, diffraction peaks at 2Θ=26.44 could be observed regardless of changes in RF power and deposition time. The FWHM was shown to decrease with increasing deposition time. And it was measured that the particle size increased as RF power was constant and deposition time was increased.

RF Magnetron Co-sputtering법으로 형성된 GZO & IGZO 박막의 불순물 농도에 따른 광학적 전기적 특성 연구

  • Hwang, Chang-Su;Park, In-Cheol;Kim, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.85-85
    • /
    • 2011
  • RF magnetron co-sputtering을 이용하여 RF power 및 공정 압력에 따라 GZO 및 IGZO 박막을 유리기판 위에 제작하고 투명전극으로 구조적, 광학적, 전기적 특성을 조사하였다. 박막 증착 조건의 초기 압력은 $1.0{\times}10^{-6}Torr$, 증착온도는 상온으로 고정하였으며 기판은 Corning 1737 유리기판을 사용하였다. 소결된 타겟으로 ZnO, $In_2O_3$$Ga_2O_3$을 이용하였으며, 각각의 타겟은 독립 된 RF파워를 변화시키며 투명전극의 성분비를 조절하였으며, 증착 압력은 10 m에서 100 mTorr까지, 기판과의 거리는 25 mm에서 65 mm까지 변화시키며 박막을 제작하였다. 유리기판 위에 불순물이 첨가된 모든 ZnO 박막에서 (002) 면의 우선배향성이 관찰되었고, 3.4eV에서 3.5eV 정도의 광학적 밴드갭을 가지며 80% 이상의 투과율을 나타내었다. GZO 박막의 경우 증착 조건에 따라 투명전극에 요구되는 $5*10^{-3}{\Omega}-cm$ 이하의 전기적특성을 가짐을 보였으며, gallium 성분이 0%에서 6%로 증가함에 따라 3.3eV에서 3.5eV로 blue-shift하였으며, 비저항은 0.02에서 $0.005{\Omega}cm$로 낮아졌으며 이동도는 $4.7cm^2V^{-1}s^{-1}$에서 $2.7cm^2V^{-1}s^{-1}$로 보이며 GZO 물질이 투명전극으로서 기존의 ITO 물질 대체 가능성을 확인하였다. IGZO 박막은 In과 Ga의 함량에 따라 저항률의 변화가 크게 나타났으며, In의 함량이 많을수록 이동도, 캐리어 농도의 증가로 저항률은 감소하였다.

  • PDF

An Integrated Si BiCMOS RF Transceiver for 900MHz GSM Digital Handset Application (II) : RF Transmitter Section (900MHz GSM 디지털 단말기용 Si BiCMOS RF 송수신 IC 개발 (II) : RF 송신단)

  • Lee, Kyu-Bok;Park, In-Shig;Kim, Jong-Kyu;Kim, Han-Sik
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.9
    • /
    • pp.19-27
    • /
    • 1998
  • The Transmitter part of single RF transceiver chip for an extended GSM handset application was circuit-designed, fabricated adn evaluated. The RF-IC Chip was processed by 0.8${\mu}m$ Si BiCMOS, 80 pin TQFP of $10 {\times} 10mm$ size, 3.3V operated RF-IC reveals, in general, quite reasonable integrity and RF performances. This paper describes development resuts of RF transmitter section, which includes IF/RF up-conversion mixer, IF/RF polyphase and pre-amplifier. The test results show that RF transmitter section is well operated within frequency range of 880~915MHz, which is defined on the extended GSM(E-GSM) specification. The transmitter section also reveals moderate power consumption of 71mA and total output power of 8.2dBm.

  • PDF

Effect of RF Power on the Structural, Optical and Electrical Properties of Amorphous InGaZnO Thin Films Prepared by RF Magnetron Sputtering (RF 마그네트론 스퍼터링으로 증착한 비정질 InGaZnO 박막의 구조적, 광학적, 전기적 특성에 미치는 RF 파워의 영향)

  • Shin, Ji-Hoon;Cho, Young-Je;Choi, Duck-Kyun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.38-43
    • /
    • 2009
  • To investigate the effect of RF power on the structural, optical and electrical properties of amorphous InGaZnO (a-IGZO), its thin films and TFTs were prepared by RF magnetron sputtering method with different RF power conditions of 40, 80 and 120 W at room temperature. In this study, as RF power during the deposition process increases, the RMS roughness of a-IGZO films increased from 0.26 nm to 1.09 nm, while the optical band-gap decreased from 3.28 eV to 3.04 eV. In the case of the electrical characteristics of a-IGZO TFTs, the saturation mobility increased from $7.3cm^2/Vs$ to $17.0cm^2/Vs$, but the threshold voltage decreased from 5.9 V to 3.9 V with increasing RF power. It is regarded that the increment of RF power increases the carrier concentration of the a-IGZO semiconductor layer due to the higher generation of oxygen vacancies.

Effects of Deposition Parameters on the Bonding Structure and Optical Properties of rf Sputtered a-Si$_{1-x}$C$_{x}$: H films (RF 스퍼터링으로 증착된 a-Si$_{1-x}$C$_{x}$: H 박막의 결합구조와 광학적 성질에 미치는 증착변수의 영향)

  • 한승전;권혁상;이혁모
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.5
    • /
    • pp.271-281
    • /
    • 1992
  • Amorphous hydrogenated silicon carbide(a-Si1-xCx : H) films have been prepared by the rf sputtering using a silicon target in a gas mixture of Argon and methane with varying methane gas flow rate(fCH) in the range of 1.5 to 3.5 sccm at constant Argon flow rate of 30sccm and rf power in the range of 3 to 6 W/$\textrm{cm}^2$. The effects of methane flow rate and rf power on the structure and optical properties of a-Si1-xCx : H films have been analysed by measuring both the IR absorption spectrum and the UV transmittance for the films. With increasing the methane flow rate, the optical band gap(Eg) of a-Si1-xCx : H films increases gradually from 1.6eV to the maximum value of 2.42eV at rf power of 4 W/$\textrm{cm}^2$, which is due to an increases in C/Si ratio in the films by an significant increase in the number of C-Hn bonds. As the rf power increases, the number of Si-C and Si-Hn bonds increases rapidly with simultaneous reduction in the number of C-Hn bonds, which is associated with an increase in both degree of methane decomposition and sputtering of silicon. The effects of rf power on the Eg of films are considerably influenced by the methane flow rate. At low methane flow rate, the Eg of films decreased from 2.3eV to 1.8eV with the rf power. On the other hand, at high methane flow rate, that of films increased slowly to 2.4eV.

  • PDF

A Study on CdS Deposition using Sputtering (Sputtering을 이용한 CdS 증착에 관한 연구)

  • Lee, Dal-Ho;Park, Jung-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.4
    • /
    • pp.293-297
    • /
    • 2020
  • This paper tried to find the best conditions that could be applied to solar cells by deposition of CdS thin film on ITO glass using multiplex displacement sputter system. RF power was changed to 50W, 100W, and 150W and sputtering time was set to 10 minutes. As a result of the measurement of transmittance, the average transmittance in the area of 400 to 800 nm was measured from 60% to 80% and the best characteristic was measured at 150W at 84%. The band gap was also measured at 3.762eV at 50W, 4.037eV at 100W and 4.052eV at 150W. In XRD analysis, even as RF power was increased, it was observed as a structure called Wurtzite (hexagonal) of CdS. And as RF power increased, the particles were large and uniformly deposited, but at 100W the particles were densely composed and dense. And the thickness measurement showed that the RF power increased uniformly.

A study on the formation and properties of TMDSO/$O_2$ thin film by the RF Plasma CVD (RF Plasma CVD에 의한 TMDSO/$O_2$의 합성과 박막의 특성에 관한 연구)

  • Kim, I.S.;Kim, G.Y.;Kang, D.P.;Yun, M.S.;Park, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.265-268
    • /
    • 1991
  • In the study, PPTMDSO(plasma-polymerized tetramethyldisiloxane) films were deposited on on glass substrate in a paralled plate reactor. As the function of RF power increased from 20 W to 110 W, and the substrate temperature increased from $25^{\circ}C$ to $100^{\circ}C$, the deposit ion rate, increased. When oxygen was intentionally added in monomer vapor, the concentration of Si-O-Si bonds increased while C-H, Si-H, -CH3, Si(CH3)x, -CH3, and Si-C bonds decreased in IR spectra. Thermal stability of PPTMSDO film were investigated and weight loss at $800^{\circ}C$ was 7.3 %.

  • PDF

Development of High-Performance Ultra-small Size RF Chip Inductors (고성능의 초소형 RF 칩 인덕터 개발)

  • 윤의중;천채일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.340-347
    • /
    • 2004
  • Ultra-small size, high-performance, solenoid-type RF chip inductors utilizing low-loss A1$_2$O$_3$ core materials were investigated. The dimensions of the RF chip inductors fabricated were 1.0mm${\times}$0.5mm${\times}$0.5mm and copper coils were used. The materials (96% A1$_2$O$_3$) and shape (I-type) of the core, the diameters (40${\mu}{\textrm}{m}$) and position (middle) of the coil, and the lengths (0.35mm) of solenoid were determined by a high-frequency structure simulator (HFSS) to maximize the performance of the inductors. The high-frequency characteristics of the inductance (L) and quality-factor (Q) of the developed inductors were measured using a RF impedance/material analyzer (E4991A with E16197A test fixture). The developed inductors exhibit an inductance of 11 to 11.3nH and a qualify factor of 22.3 to 65.7 over the frequency ranges of 250 MHz to 1.7 GHz, and show results comparable to those measured for the inductors prepared by Coilcraft$^{TM}$. The simulated data described the high-frequency data of the L and Q of the fabricated inductors well.