• Title/Summary/Keyword: eDNA

Search Result 2,317, Processing Time 0.029 seconds

Sampling and Extraction Method for Environmental DNA (eDNA) in Freshwater Ecosystems (수생태계의 환경유전자(environmental DNA: eDNA) 채집 및 추출기술)

  • Kim, Keonhee;Ryu, Jeha;Hwang, Soon-jin
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.170-189
    • /
    • 2021
  • Environmental DNA (eDNA) is a genetic material derived from organisms in various environments (water, soil, and air). eDNA has many advantages, such as high sensitivity, short investigation time, investigation safety, and accurate species identification. For this reason, it is used in various fields, such as biological monitoring and searching for harmful and endangered organisms. To collect eDNA from a freshwater ecosystem, it is necessary to consider the target organism and gene and a wide variety of items, such as on-site filtration and eDNA preservation methods. In particular, the method of collecting eDNA from the environment is directly related to the eDNA concentration, and when collecting eDNA using an appropriate collection method, accurate (good quality) analysis results can be obtained. In addition, in preserving and extracting eDNA collected from the freshwater ecosystem, when an accurate method is used, the concentration of eDNA distributed in the field can be accurately analyzed. Therefore, for researchers at the initial stage of eDNA research, the eDNA technology poses a difficult barrier to overcome. Thus, basic knowledge of eDNA surveys is necessary. In this study, we introduced sampling of eDNA and transport of sampled eDNA in aquatic ecosystems and extraction methods for eDNA in the laboratory. In addition, we introduced simpler and more efficient eDNA collection tools. On this basis, we hope that the eDNA technique could be more widely used to study aquatic ecosystems and help researchers who are starting to use the eDNA technique.

Application of Environmental DNA (eDNA) for Marine Biodiversity Analysis (해양생물 다양성 연구를 위한 환경유전자(eDNA)의 적용)

  • Soyun Choi;Seung Jae Lee;Eunkyung Choi;Euna Jo;Jinmu Kim;Minjoo Cho;Jangyeon Kim;Sooyeon Kwon;Hyun Park
    • Journal of Marine Life Science
    • /
    • v.8 no.2
    • /
    • pp.93-103
    • /
    • 2023
  • eDNA, an abbreviation for environmental DNA, means DNA derived from organisms inhabiting in a specific environment. The utilization of eDNA extracted from environmental samples allows for efficient and accurate monitoring of organisms inhabiting the respective environment. Specifically, eDNA obtained from seawater samples can be used to analyze marine biodiversity. After collecting seawater samples and extracting eDNA, metagenome analysis enables the taxonomic and diversity analysis among marine organisms inhabiting the sampled area. This review proposed an overall process of marine biodiversity analysis by utilizing eDNA from seawater. Currently, the application of eDNA for analyzing marine biodiversity in domestic setting is not yet widespread. This review can contribute to establishment of marine eDNA research methods in Korea, providing valuable assistance in standardizing the use of eDNA in marine biodiversity studies.

Effect of escherichia coli plasmid DNA sequences on plasmid replication in yeast (효모에서 plasmid의 복제에 대장균 plasmid DNA가 미치는 영향에 관한 연구)

  • 김태국;최철용;노현모
    • Korean Journal of Microbiology
    • /
    • v.27 no.1
    • /
    • pp.16-20
    • /
    • 1989
  • The effect of E. coli plasmid DNA sequences contained by chimeric vectors on plasmid replication was investigated. We constructed YRp7- or 2.$\mu$m circle-based plasmids containing E. coli plasmid DNA sequences and those not containing it. By examining their maintenance in yeast, we showed that plasmid without E. coli plasmid DNA sdquences was nore stable and presented higher copy number, and espressed higher level of hepatitis B viral surface antigen as a foreign gene. This result suggested that E. coli plasmid DNA sequences within chimeric plasmid somehow inhibited plasmid replication in yeast.

  • PDF

Efficiency of Density Gradient Centrifugation Method (Ludox method) Based on eDNA for the Analysis of Harmful Algal Bloom Potential (유해남조류 발생 잠재성 분석을 위한 eDNA 기반의 퇴적물 전처리 방법: 밀도 구배 원심분리법(Ludox method))

  • Kyeong-Eun Yoo;Hye-In Ho;Hyunjin Kim;Keonhee Kim;Soon-Jin Hwang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.36-44
    • /
    • 2023
  • Environmental DNA (eDNA) can exist in both intracellular and extracellular forms in natural ecosystems. When targeting harmful cyanobacteria, extracellular eDNA indicates the presence of traces of cyanobacteria, while intracellular eDNA indicates the potential for cyanobacteria to occur. However, identifying the "actual" potential for harmful cyanobacteria to occur is difficult using the existing sediment eDNA analysis method, which uses silica beads and cannot distinguish between these two forms of eDNA. This study analyzes the applicability of a density gradient centrifugation method (Ludox method) that can selectively analyze intracellular eDNA in sediment to overcome the limitations of conventional sediment eDNA analysis. PCR was used to amplify the extracted eDNA based on the two different methods, and the relative amount of gene amplification was compared using electrophoresis and Image J application. While the conventional bead beating method uses sediment as it is to extract eDNA, it is unknown whether the mic gene amplified from eDNA exists in the cyanobacterial cell or only outside of the cell. However, since the Ludox method concentrates the intracellular eDNA of the sediment through filtration and density gradient, only the mic gene present in the cyanobacteria cells could be amplified. Furthermore, the bead beating method can analyze up to 1 g of sediment at a time, whereas the Ludox method can analyze 5 g to 30 g at a time. This gram of sediments makes it possible to search for even a small amount of mic gene that cannot be searched by conventional bead beating method. In this study, the Ludox method secured sufficient intracellular gene concentration and clearly distinguished intracellular and extracellular eDNA, enabling more accurate and detailed potential analysis. By using the Ludox method for environmental RNA expression and next-generation sequencing (NGS) of harmful cyanobacteria in the sediment, it will be possible to analyze the potential more realistically.

Application of Environmental DNA for Monitoring of Freshwater Fish in Korea (환경유전자의 국내 담수어류 모니터링 적용 연구)

  • Kim, Jeong-Hui;Jo, Hyunbin;Chang, Min-Ho;Woo, Seung-Hyun;Cho, Youngho;Yoon, Ju-Duk
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.1
    • /
    • pp.63-72
    • /
    • 2020
  • In this study, to discuss on the applicability of eDNA as a new method to investigate fish diversity at streams, we applied eDNA at 4 streams (Geum River, Ji Stream, Hwangji Stream, Seomjin River), where endangered species are inhabits, with conventional survey (cast net and kick net). The average (±standard deviation) number of species investigated by eDNA were 19 species (±4.4), and it was relatively higher than average of conventional survey, 10 species (±4.8). Most of case, in this study, eDNA was more efficient than conventional survey. However, there were errors on species identification of Korean endemic species and aliied species from eDNA, and it seems the universal primer (MiFish primer set) is not suitable for them. Furthermore, some of endangered species, caught by conventional method, was not detected by eDNA. As the present universal primer is not suitable for identify the every freshwater fish species in Korea, the complementing or development of universal primer is needed, and the eDNA application after species specific marker development for detecting specific species like endangered species should be considered. In conclusion, if the manual for field survey method by eDNA is developed, we expect applicability enlargement for water ecosystem survey.

Analysis and evaluation of morphological and molecular polymorphism in the hybridization of Elaeagnus ×maritima and E. ×submacrophylla (잡종 기원 녹보리똥나무와 큰보리장나무의 형태학적 및 분자적 다양성 분석 및 평가)

  • Young-Jong JANG;Dong Chan SON;Kang-Hyup LEE;Jung-Hyun LEE;Boem Kyun PARK
    • Korean Journal of Plant Taxonomy
    • /
    • v.53 no.2
    • /
    • pp.126-147
    • /
    • 2023
  • The taxonomic identity of Elaeagnus ×maritima and E. ×submacrophylla (Elaeagnaceae) in Korea is unclear, yet they are presumed to be hybrid taxa based on their morphology. To determine their hybrid origins, a morphological analysis (field surveys and specimen examinations) and a molecular analysis involving two nuclear ribosomal DNA (nrDNA) regions (internal transcribed spacer and 5S non-transcribed spacer) and one chloroplast DNA (cpDNA) region (matK) were conducted. The morphological analysis revealed that E. ×maritima showed certain morphological similarities to E. glabra, whereas E. ×submacrophylla showed certain morphological similarities to E. pungens. However, the molecular analysis indicated that E. ×maritima exhibited additive species-specific sites of E. glabra and E. macrophylla in the nrDNA regions. Notably, E. ×submacrophylla showed various aspects, with some individuals exhibiting additive species-specific sites of E. pungens and E. macrophylla in the nrDNA and E. macrophylla sequences in the cpDNA regions, some individuals exhibiting E. macrophylla sequences in the nrDNA and E. pungens sequences in the cpDNA regions, and some individuals displaying E. macrophylla sequences in both the nrDNA and cpDNA regions, despite an intermediate morphology between E. pungens and E. macrophylla. These results indicate that these two species are of hybrid origin and frequently cross between parental and hybrid individuals.

Production of Soluble Human Granulocyte Colony Stimulating Factor in E. coli by Molecular Chaperones

  • PARK SO-LIM;SHIN EUN-JUNG;HONG SEUNG-PYO;JEON SUNG-JONG;NAM SOO-WAN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1267-1272
    • /
    • 2005
  • The effects of coexpression of GroEL/ES and DnaK/DnaJ/GrpE chaperones on the productivity of the soluble form of human granulocyte colony stimulating factor (hG-CSF) in E. coli were examined. Recombinant hG-CSF protein was coexpressed with DnaK/DnaJ/GrpE or GroEL/ES chaperones under the control of the araB or Pzt-1 promoter, respectively. The optimal concentration of L-arabinose for the expression of DnaK/DnaJ/GrpE was found to be 1 mg/ml. When L-arabinose was added at $OD_{600}$=0.2 (early-exponential phase), soluble hG-CSF production was greatly increased. In addition, it was observed that the DnaK/DnaJ/GrpE and GroEL/ES chaperones had no synergistic effects on preventing aggregation of hG-CSF protein. Consequently, by coexpression of the DnaK/DnaJ/GrpE chaperone, the signal intensity of the hG-CSF protein band in the soluble fraction of cell lysate was increased from $3.5\%\;to\;13.9\%$, and Western blot analysis also revealed about a 4-5-fold increase of production of soluble hG-CSF over the non-induction case of DnaK/DnaJ/GrpE.

A Photosensitive Glass Chip for DNA Purification of Nucleic Acid Probe Assay

  • Kim, Joon-Ho;Kim, Byung-Gyun;Yoon, Jun-Bo;Euisik Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.4
    • /
    • pp.232-238
    • /
    • 2001
  • A new DNA purification chip is proposed and fabricated for the sample preparation of Nucleic Acid (NA) probe assay. The proposed DNA purification chip is fabricated using photosensitive glass substrate and polydimethylsiloxane (PDMS) cover fixture. We have successfully captured and eluted the DNA using the fabricated photosensitive glass chip. The fabricated DNA purification chip showed a binding capacity of $15ng/\textrm{cm}^2$and a minimum extractable input concentration of $100copies/200\muL$. The proposed DNA purification chip can be applied for low-cost, disposable sample preparation of NA probe assays.

  • PDF

Evaluation of Benthic Macroinvertebrate Diversity in a Stream of Abandoned Mine Land Based on Environmental DNA (eDNA) Approach

  • Bae, Mi-Jung;Ham, Seong-Nam;Lee, Young-Kyung;Kim, Eui-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.221-228
    • /
    • 2021
  • Recently, environmental DNA (eDNA)-based metabarcoding approaches have been proposed to evaluate the status of freshwater ecosystems owing to various advantages, including fast and easy sampling and minimal habitat disruption from sampling. Therefore, as a case study, we applied eDNA metabarcoding techniques to evaluate the effects of an abandoned mine land located near a headwater stream of Nakdonggang River, South Korea, by examining benthic macroinvertebrate diversity and compared the results with those obtained using the traditional Surber-net sampling method. The number of genera was higher in Surber-net sampling (29) than in the eDNA analysis (20). The genus richness tended to decrease from headwater to downstream in eDNA analysis, whereas richness tended to decrease at sites with acid-sulfated sediment areas using Surber-net sampling. Through cluster analysis and non-metric multidimensional scaling, the sampling sites were differentiated into two parts: acid-sulfated and other sites using Surber-net sampling, whereas they were grouped into the two lowest downstream and other sites using eDNA sampling. To evaluate freshwater ecosystems using eDNA analysis in practical applications, it is necessary to constantly upgrade the methodologies and compare the data with field survey methods.

Quantitative Detection of Residual E. coli Host Cell DNA by Real-Time PCR

  • Lee, Dong-Hyuck;Bae, Jung-Eun;Lee, Jung-Hee;Shin, Jeong-Sup;Kim, In-Seop
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.10
    • /
    • pp.1463-1470
    • /
    • 2010
  • E. coli has long been widely used as a host system for the manufacture of recombinant proteins intended for human therapeutic use. When considering the impurities to be eliminated during the downstream process, residual host cell DNA is a major safety concern. The presence of residual E. coli host cell DNA in the final products is typically determined using a conventional slot blot hybridization assay or total DNA Threshold assay. However, both the former and latter methods are time consuming, expensive, and relatively insensitive. This study thus attempted to develop a more sensitive real-time PCR assay for the specific detection of residual E. coli DNA. This novel method was then compared with the slot blot hybridization assay and total DNA Threshold assay in order to determine its effectiveness and overall capabilities. The novel approach involved the selection of a specific primer pair for amplification of the E. coli 16S rRNA gene in an effort to improve sensitivity, whereas the E. coli host cell DNA quantification took place through the use of SYBR Green I. The detection limit of the real-time PCR assay, under these optimized conditions, was calculated to be 0.042 pg genomic DNA, which was much higher than those of both the slot blot hybridization assay and total DNA Threshold assay, where the detection limits were 2.42 and 3.73 pg genomic DNA, respectively. Hence, the real-time PCR assay can be said to be more reproducible, more accurate, and more precise than either the slot blot hybridization assay or total DNA Threshold assay. The real-time PCR assay may thus be a promising new tool for the quantitative detection and clearance validation of residual E. coli host cell DNA during the manufacturingprocess for recombinant therapeutics.