Browse > Article
http://dx.doi.org/10.11614/KSL.2021.54.3.221

Evaluation of Benthic Macroinvertebrate Diversity in a Stream of Abandoned Mine Land Based on Environmental DNA (eDNA) Approach  

Bae, Mi-Jung (Nakdonggang National Institute of Biological Resources)
Ham, Seong-Nam (Nakdonggang National Institute of Biological Resources)
Lee, Young-Kyung (Nakdonggang National Institute of Biological Resources)
Kim, Eui-Jin (Nakdonggang National Institute of Biological Resources)
Publication Information
Abstract
Recently, environmental DNA (eDNA)-based metabarcoding approaches have been proposed to evaluate the status of freshwater ecosystems owing to various advantages, including fast and easy sampling and minimal habitat disruption from sampling. Therefore, as a case study, we applied eDNA metabarcoding techniques to evaluate the effects of an abandoned mine land located near a headwater stream of Nakdonggang River, South Korea, by examining benthic macroinvertebrate diversity and compared the results with those obtained using the traditional Surber-net sampling method. The number of genera was higher in Surber-net sampling (29) than in the eDNA analysis (20). The genus richness tended to decrease from headwater to downstream in eDNA analysis, whereas richness tended to decrease at sites with acid-sulfated sediment areas using Surber-net sampling. Through cluster analysis and non-metric multidimensional scaling, the sampling sites were differentiated into two parts: acid-sulfated and other sites using Surber-net sampling, whereas they were grouped into the two lowest downstream and other sites using eDNA sampling. To evaluate freshwater ecosystems using eDNA analysis in practical applications, it is necessary to constantly upgrade the methodologies and compare the data with field survey methods.
Keywords
environmental DNA; field sampling; functional feeding group; non-metric multidimensional scaling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhan, A., M. Hulak, F. Sylvester, X. Huang, A.A. Adebayo, C.L. Abbott, S. Adamowicz, D. Heath, M. Cristescu and H.J. MacIsaac. 2013. High sensitivity of 454 pyrosequencing for detection of rare species in aquatic communities. Methods in Ecology and Evolution 4: 558-565.   DOI
2 Benda, L.E.E., N.L. Poff, D. Miller, T. Dunne, G. Reeves, G. Pess and M. Pollock. 2004. The network dynamics hypothesis: how channel networks structure riverine habitats. BioScience 54(5): 413-427.   DOI
3 Brigham, A.R., W.U. Brigham and A. Gnilka. 1982. Aquatic Insects and Oligochaetes of North and South Carolina. Midwest Aquatic Enterprises, Mahomet, IL. 837 pp.
4 Elbrecht V., T.W.A. Braukmann, N.V. Ivanova, S.W.J. Prosser, M. Hajibabaei, M. Wright, E.V. Zakharov, P.D.N. Hebert, D. Steinke. 2019. Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ 7: e7745.   DOI
5 Gleason, J.E., V. Elbrecht, T.W. Braukmann, R.H. Hanner and K. Cottenie. 2021. Assessment of stream macroinvertebrate communities with eDNA is not congruent with tissue-based metabarcoding. Molecular Ecology 30: 3239-3251.   DOI
6 Loayza-Muro, R.A., R. Elias-Letts, J.K. Marticorena-Ruiz, E.J. Palomino, J.F. Duivenvoorden, M.H. Kraak, W. Admiraal. 2010. Metal-induced shifts in benthic macroinvertebrate community composition in Andean high altitude streams. Environmental Toxicology and Chemistry 29(12): 2761-2768.   DOI
7 Merritt, R.W. and K.W. Cummins. 2006. An Introduction to the Aquatic Insects of North America. Hunt Publishing Company, Dubugue.
8 Pennak, R.W. 1978. Freshwater Invertebrates of the United States. John Wiley and Sons, Inc., New York.
9 Quigley, M. 1977. Invertebrates of Streams and Rivers: a Key to Identification. Edward Arnold, Ltd., London.
10 Thomsen, P.F. and E. Willerslev. 2015. Environmental DNA-An emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation 183: 4-18.   DOI
11 Coble, A.A., C.A. Flinders, J.A. Homyack, B.E. Penaluna, R.C. Cronn and K. Weitemier. 2019. eDNA as a tool for identifying freshwater species in sustainable forestry: A critical review and potential future applications. Science of the Total Environment 649: 1157-1170.   DOI
12 Brinkhurst, R.O. 1986. Guide to the freshwater aquatic microdrile Oligochaetes of North America. Canadin Specil Publication of Fisheries and Aquatic Sciences 84: 259.
13 Carraro, L., E.Machler, R. Wuthrich and F. Altermatt. 2020. Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems. Nature Communication 11: 3585.   DOI
14 Clarke, A., R. Mac Nally, N. Bond and P.S. Lake. 2008. Macroinvertebrate diversity in headwater streams: a review. Freshwater Biology 53(9): 1707-1721.   DOI
15 Dowle, E.J., X.C. Pochon, J. Banks, K. Shearer and S.A. Wood. 2016. Targeted gene enrichment and high-throughput sequencing for environmental biomonitoring: A case study using freshwater macroinvertebrates. Molecular Ecology resources 16: 1240-1254.   DOI
16 Machler, E., K. Deiner, F. Spahn and F. Altermatt. 2016. Fishing in the water: effect of sampled water volume on environmental DNA-based detection of macroinvertebrates. Environmental Science & Technology 50: 305-312.   DOI
17 Fernandez, S., S. Rodriguez, J.L. Martinez, Y.J. Borrell, A. Ardura and E. Garcia-Vazquez. 2018. Evaluating freshwater macroinvertebrates from eDNA metabarcoding: A river Nalon case study. PLoS One 13: e0201741.   DOI
18 Fernandez, S., S. Rodriguez-Martinez, J.L. Martinez, E. Garcia-Vazquez and A. Ardura. 2019. How can eDNA contribute in riverine macroinvertebrate assessment? A metabarcoding approach in the Nalon River (Asturias, Northern Spain). Environmental DNA 1: 385-401.   DOI
19 Leese, F., M. Sander, D. Buchner, V. Elbrecht, P. Haase and V.M. Zizka. 2021. Improved freshwater macroinvertebrate detection from environmental DNA through minimized nontarget amplification. Environmental DNA 3: 261-276.   DOI
20 Marques, M.J., E. Martinez-Conde, J.V. Rovira, S. Ordonez. 2001. Heavy metals pollution of aquatic ecosystems in the vicinity of a recently closed underground lead-zinc mine (Basque Country, Spain). Environmental Geology 40: 1125-1137.   DOI
21 Meyer, A., F. Boyer, A. Valentini, A. Bonin, G.F. Ficetola, J.N. Beisel, J. Bouquerel, P. Wagner, C. Gaboriaud, Fl. Leese, T. Dejean, P. Taberlet and P. Usseglio-Polatera. 2021. Morphological vs. DNA metabarcoding approaches for the evaluation of stream ecological status with benthic invertebrates: Testing different combinations of markers and strategies of data filtering. Molecular Ecology 30: 3203-3220.   DOI
22 Oksanen, J., F.G. Blanchet, R. Kindt, P. Legendre, P. Minchin, R.B. O'Hara, G. Simpson, P. Solymos, M.H.H. Stevens, H. Wagner. 2011. Vegan: Community Ecology Package. R Package Version.
23 Yoon, I.B. 1988. Illustrated Encyclopedia of Fauna and Flora of Korea. Vol. 30. Ministry of Education, Seoul.(in Korean)
24 Pereira-da-Conceicoa, L., V. Elbrecht, A. Hall, A. Briscoe, H. Barber-James and B. Price. 2021. Metabarcoding unsorted kick-samples facilitates macroinvertebrate-based biomonitoring with increased taxonomic resolution, while outperforming environmental DNA. Environmental DNA 3: 353-371.   DOI
25 Romero, A., R. Medina and S. Flores. 2008. Estudio de los metales pesados en el relave abandonado de Ticapampa. Revista del Instituto de Investigacion de la Facultad de Ingenieria Geologica, Minera, Metalurgica y Geografica 11(22): 13-16.
26 Tzafesta, E., F. Zangaro, V. Specchia and M. Pinna. 2021. An Overview of DNA-Based Applications for the Assessment of Benthic Macroinvertebrates Biodiversity in Mediterranean Aquatic Ecosystems. Diversity 13: 112.   DOI
27 Zeng, C., Y. Wen, X. Liu, J. Yu, B. Jin and D. Li. 2021. Impact of anthropogenic activities on changes of ichthyofauna in the middle and lower Xiang River. Aquaculture and Fisheries. In press.
28 Diaz-Ferguson, E.E. and G.R. Moyer. 2014. History, applications, methodological issues and perspectives for the use environmental DNA (eDNA) in marine and freshwater environments. Revista de Biologia Tropical 62: 1273-1284.   DOI
29 Harrison, J.B., J.M. Sunday and S.M. Rogers. 2019. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proceedings of the Royal Society B 286: 20191409.   DOI
30 R Core Team. R. 2017. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, Available online: https://www.R-project.org/ (accessed on 1 Aug 2021).