• Title/Summary/Keyword: e-symmetric ring

Search Result 12, Processing Time 0.018 seconds

Certain exact complexes associated to the pieri type skew young diagrams

  • Chun, Yoo-Bong;Ko, Hyoung J.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.265-275
    • /
    • 1992
  • The characteristic free representation theory of the general linear group has found a wide range of applications, ranging from the theory of free resolutions to the symmetric function theory. Representation theory is used to facilitate the calculation of explicit free resolutions of large classes of ideals (and modules). Recently, K. Akin and D. A. Buchsbaum [2] realized the Jacobi-Trudi identity for a Schur function as a resolution of GL$_{n}$-modules. Over a field of characteristic zero, it was observed by A. Lascoux [6]. T.Jozefiak and J.Weyman [5] used the Koszul complex to realize a formula of D.E. Littlewood as a resolution of schur modules. This leads us to further study resolutions of Schur modules of a particular form. In this article we will describe some new classes of finite free resolutions associated to the Pieri type skew Young diagrams. As a special case of these finite free resolutions we obtain the generalized Koszul complex constructed in [1]. In section 2 we review some of the basic difinitions and properties of Schur modules that we shall use. In section 3 we describe certain exact complexes associated to the Pieri type skew partitions. Throughout this article, unless otherwise specified, R is a commutative ring with an identity element and a mudule F is a finitely generated free R-module.e.

  • PDF

A NOTE ON WITT RINGS OF 2-FOLD FULL RINGS

  • Cho, In-Ho;Kim, Jae-Gyeom
    • Bulletin of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.121-126
    • /
    • 1985
  • D.K. Harrison [5] has shown that if R and S are fields of characteristic different from 2, then two Witt rings W(R) and W(S) are isomorphic if and only if W(R)/I(R)$^{3}$ and W(S)/I(S)$^{3}$ are isomorphic where I(R) and I(S) denote the fundamental ideals of W(R) and W(S) respectively. In [1], J.K. Arason and A. Pfister proved a corresponding result when the characteristics of R and S are 2, and, in [9], K.I. Mandelberg proved the result when R and S are commutative semi-local rings having 2 a unit. In this paper, we prove the result when R and S are 2-fold full rings. Throughout this paper, unless otherwise specified, we assume that R is a commutative ring having 2 a unit. A quadratic space (V, B, .phi.) over R is a finitely generated projective R-module V with a symmetric bilinear mapping B: V*V.rarw.R which is nondegenerate (i.e., the natural mapping V.rarw.Ho $m_{R}$ (V, R) induced by B is an isomorphism), and with a quadratic mapping .phi.:V.rarw.R such that B(x,y)=(.phi.(x+y)-.phi.(x)-.phi.(y))/2 and .phi.(rx)= $r^{2}$.phi.(x) for all x, y in V and r in R. We denote the group of multiplicative units of R by U(R). If (V, B, .phi.) is a free rank n quadratic space over R with an orthogonal basis { $x_{1}$, .., $x_{n}$}, we will write < $a_{1}$,.., $a_{n}$> for (V, B, .phi.) where the $a_{i}$=.phi.( $x_{i}$) are in U(R), and denote the space by the table [ $a_{ij}$ ] where $a_{ij}$ =B( $x_{i}$, $x_{j}$). In the case n=2 and B( $x_{1}$, $x_{2}$)=1/2, we reserve the notation [ $a_{11}$, $a_{22}$] for the space.the space.e.e.e.

  • PDF